Essential parts of this paper were prepared while Sebnem Kalemli-Ozcan was visiting the European Central Bank as 2008 Duisenberg Fellow. She thanks the economists at the Bank for providing a stimulating research environment. We thank Harris Dellas, Domenico Giannone, Jean Imbs, Simone Manganelli, Gian Maria Milesi-Ferretti, Bent Sorensen, Aaron Tornell, and seminar participants at UCLA, Dartmouth College, the ECB, the Oesterreichische Nationalbank, ALBA, the 5th ECB Central Banking Conference, the BIS-CGFS Workshop on Global Financial Stability, and the CEPR-EUI workshop on Globalization for helpful comments and suggestions. Dimitrios Rakitzis provided excellent research assistance. The views expressed in this paper are those of the authors and do not reflect those of the ECB, the Eurosystem, or the NBER.

© 2009 by Sebnem Kalemli-Ozcan, Elias Papaioannou, and José Luis Peydró. All rights reserved. Short sections of text, not to exceed two paragraphs, may be quoted without explicit permission provided that full credit, including © notice, is given to the source.
Financial Integration and Business Cycle Synchronization
Sebnem Kalemli-Ozcan, Elias Papaioannou, and José Luis Peydró
NBER Working Paper No. 14887
April 2009, Revised May 2009
JEL No. E32,F15,F36,G21,O16

ABSTRACT

We analyze the effect of financial integration on the degree of business cycle synchronization, using a confidential dataset on banks' international bilateral exposure over the past three decades in a panel of twenty developed countries. Financial integration is associated with less synchronized output cycles, in line with the standard theories of output fluctuations. We employ two distinct instrumental variable specifications to identify the one-way effect of integration on synchronization. These specifications reveal that the component of banking integration predicted by legislative-regulatory harmonization policies and the nature of the bilateral exchange rate regime has a negative effect on output synchronization. Our results contrast with those of the cross-sectional studies that show an increase in the degree of business cycles synchronization as a result of financial integration. We reconcile the different results by showing that the cross-sectional estimates suffer from omitted-variable bias.

Sebnem Kalemli-Ozcan
University of Houston
Department of Economics
Houston, TX 77204
and NBER
sebnem.kalemli-ozcan@mail.uh.edu

Elias Papaioannou
Dartmouth College
Department of Economics
Hanover, NH 03755
elias.papaioannou@Dartmouth.EDU

José Luis Peydró
European Central Bank
jose-luis.peydr-oalcalde@ecb.int
Standard theoretical models predict that financial integration should lead to a lower degree of business cycle synchronization. In the canonical two-country general equilibrium model with complete financial markets, the country hit by a positive productivity shock experiences an increase in the marginal product of capital and labor, and receives capital on net—a mechanism that leads to negative output correlations between the two countries (e.g. Backus, Kehoe, and Kydland (1992) and Baxter and Crucini (1995)). Obstfeld (1994) formalizes another mechanism that also yields a negative link between financial integration and business cycle synchronization. In his model, financial integration shifts investment towards risky projects, enabling countries to specialize according to their comparative advantage, which implies that output growth among financially integrated countries should be negatively correlated.\(^1\) There might also be the case, where causality runs the other way since diversification benefits become larger with less correlated shocks across countries. Heathcote and Perri (2004) develop a model, where less correlated cycles lead to an increase in the equilibrium level of financial integration. In their set-up, a higher level of financial integration further reduces the correlation of the business cycles.

Surprisingly, the empirical literature fails to find the theoretically predicted negative association between financial integration and business cycle synchronization in the data. If anything, cross-country studies find a significant positive correlation between financial integration and GDP co-movement.\(^2\) While one could reconcile the positive association between synchronization and integration introducing market imperfections such as information frictions, contagion and moral hazard (e.g. Calvo and Mendoza (2001); Morgan, Rime, and Strahan (2004)), it is not entirely clear why different cross-sectional studies focusing on different country samples and time periods, all find exactly the opposite prediction of the standard models.\(^3\) Our contribution, in this paper,

\(^1\)Kalemli-Ozcan, Sørensen, and Yosha (2003) using regional and country level data show that financial integration causes higher industrial specialization. Imbs (2004) and Kalemli-Ozcan, Sørensen, and Yosha (2001) further show that higher industrial specialization in turn leads to less synchronized cycles.

\(^2\)Imbs (2004, 2006) shows a significant positive correlation between bilateral financial linkages and output synchronization in a large cross-section of countries. Similarly Otto, Voss and Willard (2001) find that OECD countries with strong FDI linkages have more similar cycles. Using cross-country data over the period 1960–1999, Kose, Prasad, and Terrones (2004) document that financially open countries without capital account restrictions have more synchronized business cycles with world output. Davis (2008) also finds a positive correlation between integration and business cycle co-movement in a larger sample of countries. The analysis of Morgan, Rime and Strahan (2004) for the states of the U.S also reveals a positive association between banking integration and state cycles. The only study to our knowledge that documents a negative association between financial integration and synchronization is Garcia-Herrero and Ruiz (2008). These authors use capital account data for Spain and document a lower GDP synchronization of Spain with countries that Spain has strong financial linkages.

\(^3\)Note that models with moral hazard can predict both a positive and a negative relation between finance and
is to document the theoretically predicted negative effect of financial integration on business cycle synchronization as a robust regularity.

Why do our results differ from those of the previous studies? We show that the main difference between our findings and those that are in the literature is due to the estimation method. Using cross-sectional techniques, the existing studies investigate whether countries with stronger financial ties have more similar business cycles. These estimates will be biased if there are latent country-pair factors and global shocks that affect both integration and synchronization between pair of countries. In contrast, we have a rich panel dataset that allows us to identify the link between integration and synchronization, by examining the impact of within country-pair changes in financial integration on output co-movement.

We investigate the effect of financial integration on business cycle synchronization utilizing confidential data from the Bank of International Settlements’ (BIS) Locational Banking Statistics Database. This database reports bilateral cross-country bank assets and liabilities (stocks and flows) over the past three decades for a group of twenty developed countries. Our data set gives us three main advantages over the previous studies and helps us to identify the effect of financial integration on business cycle synchronization. First, the rich panel structure allows us to control both for unobservable and hard-to-account-for time-invariant country-pair factors, such as distance, sociopolitical ties and differences in cultural norms. Recent research shows that informational frictions, cultural linkages and bilateral trust—to the extent that they can be measured—have strong effects on financial integration (e.g. Portes and Rey (2005); Guiso, Sapienza, and Zingales (2009); Ekinci, Kalemli-Ozcan and Sørensen (2008); Giannetti and Yafeh (2008); Mian (2006)). In addition by shaping preferences, trust and cultural norms might directly affect business cycle patterns (e.g. Stockman and Tesar (1995)).4

Second, the considerable time dimension of the data allows us to control for global shocks over an extended period. Over the past decades cross-border financial integration has increased significantly (e.g. Lane and Milesi-Ferretti (2004, 2007)). At the same time business cycles in industrial countries have become more alike (e.g. Kose, Otrok, and Prasad (2008); Otto, Voss, and Willard (2001); Rose (2009)).5 A mechanical interpretation based on the cross-country correlations synchronization depending on the nature of the shock as in Morgan, Rime, and Strahan (2004).

4The previous studies use data on cross-sectional bilateral flows from the IMF CPIS surveys (available at most for a few years, and ends up being pooled) and instrument these flows by factors such as distance and legal structure. These variables may not be excludable from the second stage regression given the above cited papers.

5In contrast to these recent studies, Heatcote and Perri (2003) document a decline in the U.S.-rest of the world output correlations after 1986, where “rest of the world” is defined as Europe, Japan, and Canada. Doyle and
will be that financial integration has contributed to the increased correlation of countries’ output cycles. Yet, financial globalization goes hand-in-hand with trade integration, where the latter can lead to increased synchronization of business cycles. In addition, monetary policy has increasingly been coordinated at a global level, which can also affect both integration and synchronization. For example, Rose (2009) shows that inflation targeting countries tend to have a higher degree of business cycle synchronization, while Rose and Engel (2002) present cross-sectional evidence of a higher degree of synchronization among countries that share a common currency. In the same vein, Inklaar, Jong-A-Pin, and de Haan (2008) find that fiscal policy convergence has also an effect on the synchronicity of output growth in the OECD economies.

Third, by focusing on a homogeneous group of twenty developed countries, we substantially reduce concerns of parameter heterogeneity. Although there are other studies that focus only on the OECD countries, most of the cross-sectional studies pool developed, emerging market and under-developed countries into the estimation, due to limited degrees of freedom. However, theory and evidence so far suggest that the effect of integration on business cycle patterns can be quite different across the developed and the developing world (e.g. Kraay and Ventura (2000, 2007); Calderon, Chong, and Stein (2007); Kose, Otrok, and Prasad (2008); Rose (2009)).

We start our analysis by employing cross-sectional estimation to show that a higher degree of financial integration is associated with more synchronized output cycles. This result matches the results of previous studies (e.g. Imbs (2004, 2006)). Yet, once we move to the panel estimation and control for country-pair time-invariant characteristics by including country-pair fixed effects and global shocks by including time fixed effects, we find that a higher degree of financial integration is associated with more divergent, less synchronized, output cycles. We obtain similar results when Faust (2005), employing a structural break analysis, find no change in the co-movement for the G7 countries since 1980s. Figures 1 and 2 illustrate these two phenomena in our data. Detailed country figures are provided in the Supplementary Appendix.

The relationship between economic integration and business cycle synchronization dates back to the study of Mundell (1961) on the desirability of the optimal currency area, where the focus has been on trade. The main argument is that countries will be more willing to give up their autonomous monetary policy if their business cycles are more correlated with each other. Frankel and Rose (1998) point out that even if countries with asynchronous business cycles form a currency union, then the union may become endogenously optimal if trade increases output co-movement through demand spillovers. Theoretically however the impact of trade on output patterns can go either way. If lower barriers to trade induce countries to specialize then output fluctuations will become less, not more, symmetric as argued by Krugman (1991). On the other hand, if most trade stays within sectors (intra-industry trade) in spite of specialization at the sectoral level then the cycle will become more synchronized. Starting with Frankel and Rose (1998) many studies, such as, Clark and van Wincoop (2001), Otto, Voss, and Willard (2001), Baxter and Kouparitsas (2005), and Calderon, Chong and Stein (2007) show that trade integration leads to more correlated business cycles. (See Rose (2009) for a review of the literature). Yet recent work finds a much weaker link between trade intensity and output co-movement (e.g. Inklaar, Jong-A-Pin, and de Haan (2008)).
we group the data at a longer frequency by splitting the sample into six non-overlapping 5-year
periods. Controlling for bilateral goods trade and industrial specialization patterns does not alter
the results either. Dynamic panel estimates that allows us to account for inertia in business cycle
synchronization also yield a large negative effect of banking integration on output co-movement.
Our results indicate an economically significant effect: a 10% increase in bilateral integration is
associated with 1.9% (one standard deviation) fall in GDP growth co-movement.

As argued above, the finding of a negative association between integration and synchroniza-
tion can be due to reverse causation. To the best of our knowledge, there has been no paper
that estimates bilateral time-varying instrumental-variable (IV) specifications for financial and/or
trade integration. We estimate such models in an effort to identify the one way effect of financial
integration on output co-movement.

Specifically we employ two distinct identification strategies. First, building on our parallel work
on the effects of the European Union (EU) and the associated financial sector reforms on banking
integration (Kalemli-Ozcan, Papaioannou, and Peydró (2009)), we use as an instrument a bilateral
time-varying index that measures the degree of legislative-regulatory harmonization policies in
financial services among EU countries. There is a strong positive relationship between implemented
legislative harmonization policies in financial services and bilateral banking integration, conditional
on the monetary unification. This result complements the findings of the law and finance literature
(La Porta, Lopez-de-Silanes, Shleifer, and Vishny (1997, 1998); La Porta, Lopez-de-Silanes, and
Shleifer (2008)) by showing that cross-country legal harmonization is associated with an increased
degree of bilateral financial integration. The second stage estimates reveal that the component of
banking integration predicted by legislative harmonization policies in the financial sector makes
business cycles less alike.

Second, using data from Reinhart and Rogoff (2004) and Ilzetzki, Reinhart, and Rogoff (2008)
we construct a time-varying instrument that reflects the bilateral flexibility of the exchange rate
regime. The first-stage regression indicates that financial integration is significantly higher among
pairs of countries with fixed-exchange rates. This result complements previous work documenting
a similar pattern among emerging and under-developed economies (e.g. Calvo and Reinhart (2002)
and Gelos and Wei (2005)). The second-stage estimates show that the component of banking
integration predicted by the nature of the exchange rate regime is negatively associated with GDP
fluctuations. While the exchange rate regime may affect business cycles through trade, we do not
find such an effect in our data. In addition, using both instruments, where the over-identifying
restriction is not rejected, implies that higher financial integration yields lower output correlations.
The paper is structured as follows. In the next section we present our econometric methodology and data. Section 3 presents our benchmark results on the effect of financial integration on business cycle synchronization. Section 4 presents the IV estimates that link exchange rate arrangements and financial legislation reforms with banking integration in the first-stage and banking integration with output synchronization in the second stage. Section 5 concludes.

2 Econometric Methodology and Data

We exploit a unique panel dataset of bilateral financial linkages among 20 industrial countries in the period 1978 – 2007 and estimate variants of the following specification:

\[\text{SYNCH}_{i,j,t} = \alpha_{i,j} + \alpha_t + \beta \text{BANKINT}_{i,j,t-1} + \gamma \text{TRADE}_{i,j,t-1} + \mathbf{X}'_{i,j,t-1} \delta + \varepsilon_{i,j,t} \quad (1) \]

Using real per capita GDP data from World Bank’s World Development Indicator’s Database (WB WDI), we construct time-varying measures of business cycle synchronization (\(\text{SYNCH}_{i,j,t} \)) between countries \(i \) and \(j \) in year \(t \).\(^7\) \(\text{BANKINT}_{i,j,t-1} \) is a measure of cross-border banking integration between countries \(i \) and \(j \) in the previous year \((t - 1) \).\(^8\) The specification also includes year \((\alpha_t) \) and country pair fixed-effects \((\alpha_{i,j}) \). The year fixed-effects account for the effect of global trends on business cycle patterns and banking integration. The country-pair effects account for hard-to-measure factors such as cultural ties, informational frictions, political coordination and other time-invariant unobservable factors, all of which have been shown to have an effect on both financial integration and business cycle patterns.

2.1 Financial Integration Measures

We construct time-varying bilateral financial (banking) integration measures using data from the BIS International Locational Banking Statistics Database. This database reports asset and liability holdings of banks located in roughly 40 (mainly industrial) countries (“the reporting area”) in more than 150 countries (the “vis-a-vis area”) at a quarterly frequency since the end of 1977. Yet, half of these countries started reporting only recently (mostly after 2000) or are “off-shore”

\(^7\)Using PPP adjusted GDP p.c. yields almost identical results.

\(^8\)We have also estimated this specification using contemporaneous values of financial/banking integration finding similar results.
financial centers. Thus, our panel dataset consists of annual bilateral data from 20 rich economies over the period 1978–2007. These countries are: Australia, Austria, Belgium, Canada, Switzerland, Germany, Denmark, Spain, Finland, France, United Kingdom, Greece, Ireland, Italy, Japan, Luxembourg, Netherlands, Portugal, Sweden, and the United States.

The data is originally collected from domestic monetary authorities and includes all of banks’ on-balance sheet exposure as well as some off-balance sheet items (mainly in the custodian business). The data is based on the location of banks and, therefore, also includes lending to subsidiaries and affiliates. Thus it reflects more accurately the international exposure of countries (and banks) than the consolidated statistics database of the BIS that nets out lending and investment to affiliate institutions. The data captures mainly international bank to bank debt, such as inter-banks loans and deposits, credit lines, and trade-related activities. The data also covers bank’s investment in equity-like instruments as well as foreign corporate and government bonds. Unfortunately the BIS dataset does not distinguish between inter-bank debt activities and portfolio investment. Thus we can not explore potential differential effects of various types of capital holdings and flows on business cycles synchronization. Going over the documentation (BIS (2003a,b); Wooldridge (2002)) it seems that during the initial years most flows reflect bank-to-bank transactions and credit lines, while FDI and equity flows have become more important after the mid-nineties. International bank M&A activity and direct lending to foreign residents have been limited overall (see Buch and De Long (2004) and Lane (2008)). Thus, the data mainly captures investment in debt related instruments and standard international banking activities. Besides stocks, the BIS also reports asset and liability flows in each period.

The BIS data is expressed originally in current USD. We convert the data into constant USD

9We prefer to use annual data given the noisy nature of quarterly data. Our panel has \(1/2N \times (N - 1) \times T\), i.e. \(20 \times 19 \times 30 = 5700\) observations. There are, however, some missing observations (gaps), mainly in the initial years. Thus most of our models are estimated in a sample of 5,376 observations. For robustness we also estimated the specifications in a balanced panel dropping the observations in the late 1970s. The results are similar to the ones reported below and if anything stronger.

10Our data includes the transactions through financial centers such as the U.K. and Switzerland. As long as business cycle patterns and dynamics of assets and liabilities systematically differ between financial centers versus the other countries, this will create measurement error that will attenuate our estimates.

11Assets include mainly deposits and balances placed with non-resident banks, including bank’s own related offices abroad. They also include holdings of securities and participations (i.e. permanent holdings of financial interest in other undertakings) in non-resident entities. Data also include trade-related credit, arrears of interest and principal that have not been written down and holdings of banks own issues of international securities. They also cover portfolio and direct investment flows of financial interest in enterprises.

12Note that simply taking first differences of assets and liabilities could be misleading in constructing flows, since a devaluation either at the “source” or at the “recipient” country might cause an increase or decrease in total assets, even if no capital movements have taken place. Since reporting countries report to the BIS the currency in which the assets and liabilities are denominated, the BIS has constructed an estimate of the flows (see BIS 2003a).
by deflating the series with the US CPI. For robustness we use both stock and gross flow based measures of financial integration. The first measure ($BANKINT1$) is the average value (over four observations for each pair) of (the logs of) real bilateral stocks in asset and liabilities normalized with the sum of the population of the two countries. Analogously, the second measure ($BANKINT2$) is the average of (the logs of) gross bilateral flows of assets and liabilities as a share of the population of the two countries).13 We also experiment with other measures of integration, such as standardizing gross flows and stocks with GDP (and also the unstandardized measures). The results are similar to the ones reported here.

\section*{2.2 Business Cycle Synchronization Measures}

For robustness and comparability with previous work we experiment with three different measures of business cycle synchronization ($SYNCH_{i,j,t}$).

First, we measure business cycle synchronization with the negative of divergence defined as the absolute value of real GDP p.c. growth differences between country i and j in year t.

\begin{align*}
SYNCH1_{i,j,t} &\equiv - |(\ln Y_{i,t} - \ln Y_{i,t-1}) - (\ln Y_{j,t} - \ln Y_{j,t-1})|
\end{align*}

(2)

This index, which follows Giannone, Lenza, and Reichlin (2009), is simple and easy-to-grasp. In addition, it is not sensitive to various filtering methods that have been criticized on various grounds (e.g. Della and Canova (1992); Canova (1998, 1999)). In contrast to the correlation measures that cross-country studies mainly work with, the index does not (directly at least) reflect the volatility of output growth and, therefore, allows us to identify the impact of banking integration on the covariation of output growth.14 Isolating the covariance part is particularly desirable, because over the past two decades global volatility of output has fallen considerably in the industrial economies (e.g. Cecchetti, Flores-Lagunes, and Krause (2006)).

Second, we follow Morgan, Rime, and Strahan (2004) and construct $SYNCH2_{i,j,t}$ as follows.

13We prefer using the average of the logs of both right hand side and left hand side variables instead of the log of the average (or the sum), since the aggregate GDP cannot, in general, be strictly log-normally distributed if each country's GDP is log-normally distributed. See Baldwin (2006) for a critique of using the log of the average of two countries GDP.

14See Doyle and Faust (2005) who underline the importance of a synchronization measure that does not include volatility. Another benefit of this measure compared to standard correlation measures, is that our dependent variable is not bounded between -1 and 1 and thus the error of the specification is well-behaved (e.g. Inklaar, Jong-A-Pin, and de Haan (2008)).
First, we regress real p.c. GDP growth on country fixed-effects and year fixed-effects.

\[
\ln Y_{i,t} - \ln Y_{i,t-1} = \gamma_i + \phi_t + v_{i,t} \forall i, j
\]

The residuals \(v_{i,t}\) and \(v_{j,t}\) reflect how much GDP growth p.c. differs in each country and year compared to average growth in this year (across countries) and the average growth of this country over the estimation period. The absolute value of these residuals \(FLUCT_{i,t}\) reflects GDP fluctuations with respect to the cross-country and the across-year mean growth.

\[
FLUCT_{i,t} \equiv |v_{i,t}| \quad \text{and} \quad FLUCT_{j,t} \equiv |v_{j,t}|
\]

We then construct the business cycle synchronization proxy as the negative of the divergence of these residuals taking the absolute difference of residual GDP growth:

\[
SYNCH2_{i,j,t} \equiv -|v_{i,t} - v_{j,t}|
\]

Intuitively this index measures how similar GDP growth rates are between two countries in any given year, accounting for the average growth in each country and the average growth in each year.

Third, we follow previous cross-country studies and estimate \(SYNCH3_{i,j,t}\) as the 5-year correlation of the cyclical component of output as measured with Baxter and King (1999) Band-Pass filter \((2,8)\) (e.g. Imbs (2006); Baxter and Kouparitsas (2005)). In contrast to previous cross-sectional work, we have six 5-year observations rather than one observation per country-pair estimated over a longer period.

2.3 Control Variables

Given the emphasis of previous work on international trade and specialization patterns as determinants of synchronization, we control for these variables in our estimation. Following the literature, we measure \(TRADE_{i,j,t}\) with the log of bilateral real (deflated with US price deflator) exports and imports as a share of the two countries’s GDP.

For specialization we follow Krugman (1991), Imbs (2006), and Kalemli-Ozcan, Sørensen, and Yoshia (2003), among others, and measure specialization with the following index:
\[SPEC_{i,j,t} \equiv \sum_{n=1}^{N} |s^n_{i,t} - s^n_{j,t}| \]

where \(s^n_{i,t} \) and \(s^n_{j,t} \) denote the GDP share of manufacturing industry \(n \) in year \(t \) in country \(i \) and \(j \) respectively (data are retrieved from UNIDO). Thus, a higher number in \(SPEC_{i,j,t} \) indicates that the two countries have less similar production structures in manufacturing.

2.4 Descriptive Statistics

Table 1 gives descriptive statistics for the main variables employed in the empirical analysis. The average divergence in bilateral real p.c. GDP growth rate is 1.76% (SYNCH1). Once we control for country and time fixed-effects (SYNCH2) in synchronization the differences are somewhat smaller (mean of 1.6%). Yet both proxy measures of synchronization exhibit significant variation both across country-pairs and over time (the standard deviation is 1.6% and 1.45% respectively).

Figures 1 and 2 give a graphical illustration of the evolution of banking integration and business cycle synchronization over the period we consider in our analysis. Cross-border banking activities have increased considerably over the past three decades. For example, real international bilateral bank holdings (per capita) have increased from an average value (across the 190 country-pairs of our sample) of roughly 70 dollars to almost 600 per person as of the end of 2007. Figure 2 plots our synchronization measures over the last three decades. Growth divergence measures, SYNCH1 and SYNCH2 are plotted on the left y-axis and the correlation measure, SYNCH3, on the right y-axis. Although there is a considerable (and highly desirable from a panel estimation viewpoint) degree of short-term variability, output synchronization has been steadily increasing according to all measures since the mid-1980s. For example the average correlation of the cyclical component of GDP (SYNCH3) was around 0.1 – 0.3 in the 1980s. In the 1990s the correlation increased on average to 0.4, while in the 2000s the correlation reached 0.6.

\[\text{These numbers are an order of magnitude smaller than the total bilateral equity holdings reported for example in 2007 vintage of the IMF CPIS dataset. Yet in the 1980s and the early 1990s banking activities were a relatively larger component of total capital flows. Our instrumental variable estimates will account for any measurement error in financial integration, as long as bank holdings/flows and other holdings/flows are correlated (previous works document a strong positive correlation between various types of capital flows (e.g. Bekaert and Harvey (2000); Lane and Milesi-Ferretti (2008)))}. \]

\[\text{For completeness in the Supplementary Appendix we tabulate country-specific figures with the evolution of the three proxy measures of synchronization for each of the twenty countries we consider in the analysis.} \]
3 Benchmark Estimates

3.1 OLS Estimates: Annual Data

Table 2 gives OLS estimates on the effect of banking integration on GDP synchronization. For comparability with previous cross-country work, we start our analysis by estimating cross-sectional models, by pooling the time series observations across the 190 country pairs. The “between” estimator removes the time dimension by averaging the dependent and the explanatory variable across each country-pair. The cross-sectional coefficient on banking integration in columns (1), (3), (5), and (7) is positive and significant at standard confidence levels. This result is in line with Imbs (2004, 2006), who using alternative measures of financial integration in a larger sample of countries in the late 1990s shows that countries with closer financial linkages tend to have more similar output growth patterns. The significant positive correlation between banking integration and output synchronization is also in line with the cross-sectional estimates of Otto, Voss, and Willard (2001), who show a similar positive association between bilateral FDI linkages and output co-movement in the rich OECD economies.

In even-numbered columns we report otherwise identical specifications, but we add country-pair fixed-effects and year fixed-effects. This allows us to examine whether within pairs of countries and conditional on global trends a higher degree of international banking activities is associated with less or more similar GDP fluctuations.\(^\text{17}\) The “within” estimates stand in sharp contrast to the cross-sectional coefficients. The estimate on banking integration is statistically significant at the 1% level, but with the opposite sign to the cross-sectional specification. The panel fixed-effect models therefore imply that a higher level of international banking integration is associated with less - rather than more- alike output fluctuations. This result is present with both banking integration measures and both synchronization proxies.

As the two banking integration measures are expressed in logs (as a share of the two countries’ population) and the dependent variable is in percentage units, the coefficients in Table 2 measure the effect of a percentage increase in banking integration on output growth similarities. For example, the estimates in models (2) and (4) imply that a 10 percent increase in bilateral bank holdings is associated with 1.6% – 1.9% (roughly a one standard deviation; see Table 1) fall in GDP growth co-movement, which is an economically significant effect.

\(^{17}\text{Due to serial correlation standard errors in the “within” models are clustered at the country-pair level (Bertrand, Duflo, and Mullainathan (2004)). This method allows for arbitrary heteroskedasticity and autocorrelation across each country pair.}\)
In Table 3 we estimate autoregressive specifications, controlling for persistence in business cycle synchronization. We find that GDP fluctuations are not particularly persistent (the first autoregressive coefficient is around 0.20). Yet one might be worried that our previous results are driven by inertia in output patterns. Autoregressive models are also useful to quantify the short and the long-run effect of banking integration on business cycle synchronization.18 The coefficient on $BANKINT$ that measures the annual (short-run) effect of banking integration on GDP synchronization is negative and significant at the 1\% level. The long-run effect of banking integration is somewhat larger due to the positive serial correlation in the dependent variable. Overall, the dynamic estimates are quite similar to the simple models in Table 2, suggesting a similar magnitude for the effect of integration on synchronization.19

3.2 OLS Estimates: Five-year Averaged Data

One may worry that our results based on annual data are driven by noise. Although it is not clear why annual variation can explain the striking difference of the cross-sectional with the panel fixed-effect estimates, we also group the data into six non-overlapping 5-year periods. We use the correlation of the cyclical component of real p.c. GDP between countries i and j as the dependent variable ($SYNCH3$). Recall that while the previously used measures of synchronization reflect the covariance of output growth, the correlation measure we use in the averaged data also reflects the variance and, hence, the volatility of output growth.

Table 4 reports estimates on the effect of banking integration on the correlation of the cyclical component of output. $BANKINT$ enters with a positive and highly significant coefficient in the cross-sectional models (columns (1) and (3)). This is in line with our previously reported estimates in Tables 2 where we used alternative measures of GDP covariation and annual observations. In models (2) and (4) we report the “within” estimates. As in the annual frequency results, there is a striking difference between the cross-sectional and the panel estimates. The coefficient on banking integration in the fixed-effect models is negative and significantly lower than zero at standard

18Although the joint presence of the country-pair fixed effects and the lagged dependent variable yields biased estimates, this bias becomes negligible as the time dimension becomes large. Recent Monte Carlo studies show that the bias sharply decays when the time horizon exceeds 20 periods. For example, in the (similar to ours) context of growth regressions, Judson and Owen (1999) estimate that the bias on the lagged dependent variable is around 1 to 2 percent of the true coefficient value when T is greater than 20 and less than 1\% when the time horizon exceeds 30. More importantly, the bias on the independent variables (in our case banking integration) becomes less than one percent.

19The long-run effect of banking integration is given by the ratio of the estimate (β) on $BANKINT_{i,j,t-1}$ to one minus the sum of the (two) auto-regressive coefficients, ρ_j, i.e. Long-run Effect = $\frac{\beta}{1-\rho_1-\rho_2}$.

11
confidence levels. The panel estimates, therefore, suggest that a higher degree of financial linkages through international banking activities is associated with less synchronized output patterns, as before.

In columns (5)-(8) we examine whether our results reflect differences on trade intensity or industrial specialization.20 It is important to account for differences in bilateral trade when working with long-term data as trade in goods and financial services tend to move in tandem (see Rose and Spiegel (2004) and Aviat and Coeurdacier (2007) among others). In addition, previous studies show that trade has a significantly positive effect on business cycle synchronization (see Rose (2008) for a review). Likewise accounting for specialization patterns is key as theoretical and empirical works argue that financial integration affects the specialization patterns (e.g. Obstfeld (1994); Kalemli-Ozcan, Sorensen, and Yoshia (2001)). We again start by discussing the cross-sectional estimates reported in columns (5) and (7). The “between” coefficient on BANKINT continues to be at least two standard errors above zero in both permutations.21 As previous literature shows, trade also enters with a positive estimate in the cross-sectional models, suggesting that countries that trade more have more similar output patterns. The coefficient on SPEC is statistically negative implying that countries with dissimilar production structures have less synchronized cycles. The cross-sectional estimates in columns (5) and (7) are quite similar to Kalemli-Ozcan, Sorensen, Yoshia (2003), and Imbs (2004), who both using regional and country-level data and more elaborate techniques (IV and SUR) document similar patterns.

Yet, as in the previously (in Tables 2 and 3) reported specifications with annual data, controlling for country-pair fixed-effects and period fixed-effects changes drastically the results. The coefficient on banking integration changes sign implying that conditional on country-pair fixed factors and general time trends a higher degree of financial integration is associated with less synchronized GDP growth patterns, while controlling trade and specialization. The “within” estimate on banking integration is now larger in absolute size, compared to the analogous unconditional specifications in (2) and (4). The conditional estimates in columns (6) and (8) show that our previous estimates are not driven by differences in trade intensity and specialization patterns. Given the limited time-variation in trade and specialization differences, these variables now become insignificant correlates of business cycle synchronization.

20We also augmented the empirical model with trade and specialization one at a time, obtaining similar results.21 Note that while the models in Table 5 are otherwise similar to those in Table 4, the estimates are not directly comparable as we lose roughly 20% of our sample due to data unavailability on the industrial statistics needed to construct SPEC. Specifically we lose all observations in the late 1970s as the UNIDO dataset that we use to construct SPEC starts reporting data after 1980.
3.3 Robustness

We performed various sensitivity checks to investigate the stability of our estimates. First, we checked whether our results are driven by influential observations. The change in the sign of the coefficient on banking integration in the between and the within estimation is not due to any particular country-year observations (see the partial correlation plots in the Supplementary Appendix). Second, we estimated a weighted LS (by population or GDP p.c.) regression in order to guard against the influence of small country pairs, obtaining similar results. Third, we repeat estimation dropping Luxemburg and/or Switzerland. This helps us check whether our estimates are driven by small countries with large banking systems. The estimates (not shown for brevity) are similar to the ones reported here. Forth, we experiment with alternative proxy measures of trade intensity and production similarities, finding similar results (not shown). Fifth, we used unstandardized measures of banking integration as the dependent variable and controlled directly for population and/or GDP. Again the results (not reported) are similar. Sixth, we controlled for GDP differences to account for the possibility that our estimates are driven by countries receiving a lot of foreign bank capital and also converging to a steady state. While in some specifications lagged log GDP entered with a significant (positive) coefficient, the estimates on banking integration retain their economic and statistical significance (results not shown for brevity).

4 Instrumental Variable Estimates

Our results so far show a strong negative effect of banking integration on business cycle synchronization in a panel of countries. Although this result is robust to numerous model permutations and stability tests, one, however, could still argue that our coefficients do not capture the one way effect of financial integration on synchronization. As we control for country-pair time-invariant factors and global trends omitted variable bias is not a primary concern (although clearly can not be ruled out). A more important worry is reverse causation. This might occur if banking integration is the outcome rather than the cause of business cycle divergence. To partly account for this possibility, so far we have used lagged values of banking integration (and the other controls). Yet, ideally, one

22 For example we obtain the following coefficients and standard errors for the benchmark specifications in Table 2, columns (1) and (2). For the within regression, the estimate (s.e.) is \(-0.187 (0.039)\) and for the between regression, the estimate (s.e.) is 0.069 (0.021).

23 We thank Gian-Maria Milesi-Ferretti for pointing this possibility.

24 For example most of the robust correlates of business cycle synchronization identified in the Baxter and Kouparitsas (2005) study are time-invariant or slowly moving over time.
would need exogenous variation on bilateral banking integration. In this section, we try to address this issue by using two different instrumental variables approaches.

4.1 Financial Sector Legislative-Regulatory Harmonization and Integration

Building on our parallel work on the impact of European financial harmonization policies and the single currency on banking integration (Kalemli-Ozcan, Papaioannou, and Peydró (2009)), we construct a policy instrument for banking integration using data on financial sector harmonization policies across EU15 countries. Using legislative harmonization in financial services as an instrument for bilateral banking integration is conceptually appealing, as we link policy changes in a particular aspect of law (financial intermediation) with outcomes in the same industry. To construct the instrument we use information from the EU Commission on the implementation of the Directives of the Financial Services Action Plan (FSAP), a major policy initiative that aimed to remove regulatory and legislative barriers across European countries in financial sector. The FSAP was launched at the end of 1998 with the aim to complement monetary unification. The plan included 27 Directives. However, at the official completion at the end of 2003 the EU Commission had passed only 21 of these measures.\(^{25}\) EU Directives are legal acts that do not become immediately enforceable across the EU. Instead, member countries are given some time to adopt, modify and eventually transpose the Directives into domestic law. The time of the transposition may take many years, as EU member states delay the adaptation to protect domestic firms and interest groups and for other policy motives and bureaucratic inefficiencies.

To construct the bilateral harmonization index we proceed as follows: First, we define 21 indicator variables that are equal to one starting at the year of the transposition of each Directive into national law and zero otherwise. Second, we create the country-time varying legislation measure ranging from 0 to 21 by summing the values of these 21 indicator variables \((LEX_{i,t})\). Third, as we need a country-pair time-varying measure of harmonization and regulatory convergence, we take the sum of the log value of the legislation measure for each country in each year (i.e. \(HARM_{i,j,t} \equiv \ln(LEX_{i,t}) + \ln(LEX_{j,t})\)).\(^{26}\)

\(^{25}\)The remaining 6 Directives of the FSAP passed in the period 2004–2007 and are still being transposed by member countries. We also used an alternative index based on the total number of the 27 Directives. The results are similar (not reported for brevity).

\(^{26}\)Imbs (2006) and Kalemli-Ozcan, Sorensen and Yosha (2001) employ a similar bilateral instrumentation strategy using, however, cross-sectional data. Specifically these studies use the sum of the La Porta, Lopez-de-Silanes, Shleifer, and Vishny (1997, 1998) measures of investor protection of the two countries as an instrument for bilateral financial integration.
Table 5 reports (static and dynamic) panel (bilateral) fixed-effect IV specifications examining the “within” correlation of the component of banking integration explained by legal-regulatory harmonization on business cycle synchronization. The first stage estimates show that countries that quickly incorporated into domestic law the EU-wide regulatory-legislative harmonization policies became more financially integrated through international banking activities. This result is interesting in light of the law and finance literature that demonstrates that countries with well defined and protected investor protection rights tend to have more deep and liquid capital markets (see La Porta, Lopez-de-Silanes, Shleifer, and Vishny (1997, 1998); La Porta, Lopez-de-Silanes, and Shleifer (2008)). The first-stage result adds to this body of work by showing that legal convergence is associated with a higher degree of financial links. The first-stage fit is strong. In all model permutations the first-stage F-score is significantly larger than 10, the rule-of-thumb value that alerts for weak instrument problems (Staiger and Stock (1997); Stock and Yogo (2001)). The “reduced-form” regression of banking integration on legislative harmonization (not shown) yields a positive and highly significant (positive) estimate on $HARM_{i,j,t}$. This suggests that conditional on country-pair factors and global trends, harmonization policies in financial services have lowered the synchronicity of output growth.

In all permutations the second-stage coefficient on banking integration is negative. The estimate is in all specifications significant at standard confidence levels. These results offer support to the idea that banking integration leads to more divergent output patterns (rather than the other way around). The 2SLS estimates are larger than the analogous OLS coefficients (in Tables 2 and 3). This might be due to the fact that 2SLS corrects for the attenuation bias caused by measurement error. Although our banking integration variable captures all cross-border banking activities (and thus classical measurement error should be negligible), it does not include other types of international investment. As the various forms of financial integration are positively correlated (e.g. Lane and Milesi-Ferretti (2004, 2007)), the larger in absolute value IV coefficients most likely reflect this particular form of measurement error.

To investigate the “exclusivity” assumption of our identification approach, we regress synchronization on both bilateral banking integration and harmonization with LS and 2SLS (in this case

27The first stage estimates differ in the case of dynamic panel estimation since we have slightly different samples.
28Kalemli-Ozcan, Papaioannou and Peydró (2009) show that this result is robust to various permutations and the effect of legal-regulatory harmonization on banking integration works on top of monetary unification (see also results below). Note that the first-stage specification includes a “treatment” group of countries (the EU15) that have harmonized their financial legislation (to different degrees) and a “control” group of economies (non EU-15). As we show below (in Table 7) the positive effect of legislative harmonization policies in financial services on banking integration works on top of the positive effect of the euro due to the elimination of exchange rate risk.
instrumenting integration with our second instrument). The coefficient on the harmonization index is indistinguishable from zero, while banking integration continues to enter with a negative estimate. This hints that financial services harmonization policies do not affect synchronization directly, but rather through financial integration.

4.2 Bilateral Exchange Rate Regime and Banking Integration

The fear of floating literature (Calvo and Reinhart (2002); Rogoff and Reinhart (2004)) shows that developing countries appear unwilling to let their currencies float. A main reason behind this policy is to attract foreign investment. In line with this, Gelos and Wei (2005) find that large emerging economies equity funds invest significantly more in countries with a fixed-exchange rate regime. Kalemli-Ozcan, Papaioannou and Peydró (2009) show a similar pattern for developed economies. Building on this body of work we employ an alternative identification scheme that links currency flexibility with synchronization through financial linkages. We exploit the recent update of the de-facto exchange rate regime classification of Reinhart and Rogoff (2004) by Ilzetzki, Reinhart, and Rogoff (2008), and use a bilateral index that measures the flexibility of the exchange rate as an instrument for banking integration. The Reinhart and Rogoff fine classification ranges from 1 to 14 where lower values suggest a more rigid regime. For example, euro area countries get a score of 1 after 1999 and a score of 4 in the 1990s (when they were participating in the European Exchange Rate Mechanism). The U.S. gets a score of 12 to 14, while Canada fluctuates around 8. Using this dataset we construct the bilateral index by taking the sum of the log classification of countries i and j in the beginning of each year t ($ERSUM = \ln(ER_{i,t}) + \ln(ER_{j,t})$).

Table 6 reports first-stage and the second-stage results. As shown in panel B, there is a strong negative association between bilateral exchange rate flexibility and banking integration. In line with previous works, there is a higher level of cross-border lending between countries with rigid exchange rate regimes. Not only is the coefficient on the nature of the bilateral exchange rate regime significant at standard confidence, but the diagnostics indicate no weak instrument problems. Turning to the second-stage results (reported on Panel A), the coefficient on $BANKINT$ continues to be negative, implying that a higher degree of banking integration is associated with less synchronized output cycles. The second-stage estimates are significant at the 10% level in the static specifications reported in columns (1)-(4). The estimates are significant at the 1% level

29 These results are not shown for brevity. In Table 8 and Section 3.3 we perform a formal test of the “exclusivity” assumption.

30 This transformation does not change our results. Taking logs gives us a better first-stage fit.
in the dynamic specifications in columns (5)-(8), where we control for inertia in GDP growth co-
movement. Compared to the analogous OLS estimates, the 2SLS coefficients imply an even larger
effect of banking integration on business cycle divergence. As before this is most likely due to the
fact that our banking integration data only just captures one portion of bilateral financial linkages.

The exclusivity assumption for instrument validity in the IV results in Table 6 is that the
nature of the bilateral exchange rate regime does not affect GDP synchronization via other than
financial integration channels. A potential other channel of influence of the exchange rate regime
on synchronization is through goods trade. While there weak evidence linking exchange rate regime
flexibility and trade, Klein and Shambaugh (2006) document a significant effect. Yet, it is unlikely
that trade impacts business cycle synchronization at the annual frequency. Even at the five-year
panel estimates reported in Table 4 trade was an insignificant correlate of GDP co-movement, once
we control for country-pair fixed-effects and global trends.

Yet clearly one could rule out that the effect of the exchange rate regime on synchronization
works (partially at least) through trade. To formally account for the potential effect of bilateral
exchange rate regime on synchronization via trade rather than via financial integration, we esti-
mate panel 2SLS models in the six non-overlapping 5-year windows controlling for trade (as well
as differences in industrial structure). Table 7 reports these models together with analogous un-
conditional specifications. The first-stage fit continues to be strong. Exchange rate flexibility is
a highly significant (at the 1% level) correlate of financial integration, even when we control for
trade and specialization. The F-score of the excluded instrument is in the range of 18 – 31, much
higher than the critical values tabulated by Stock and Yogo (2002) that alert for weak instrument
biases. The second-stage coefficient on banking integration continues to be negative and significant
at the 1% level. Not only does the coefficient on banking integration retains its significance when we
control for trade and specialization, but the specifications clearly show that trade is an insignificant
correlate of GDP synchronization. In contrast specialization enters with a significant estimate (at
the 10%) suggesting that a higher degree of production similarities is associated with more similar
output patterns.

To investigate whether the exchange rate regime has a direct impact on output synchronization
we estimated LS specifications with both $BANKINT$ and $ERSUM$ on the RHS. The results
(not reported for brevity) show that once we control for banking integration, the coefficient on the
nature of the exchange rate regime turns insignificant. In contrast, banking integration continues
to enter with a highly significant estimate. This hints that the nature of the currency regime affects
business cycle patterns through financial integration.
4.3 Joint IV and Exclusion Restriction Testing

The two instrumentation strategies offer support to the idea that banking integration leads to more divergent output patterns rather than the other way around. For testing the validity of the instruments we run 2SLS regressions using both the bilateral harmonization index and the measure of the flexibility of the exchange rate regime as instruments for banking integration. Table 8 reports the panel fixed-effects IV specifications. The first stage estimates (reported in Panel B) show that financial integration is higher among pair of countries that peg their currencies and countries with harmonized legislation-regulation in financial services. Both instruments enter with significant point estimates. This suggests that cross-border banking activities are affected by both monetary arrangements and legal-regulatory harmonization policies. The joint F-score of the excluded variables indicates no weak instrument problems. The second stage estimates (reported in Panel A) are in line with our LS and IV results so far. The 2SLS estimate on banking integration is negative and significant at standard confidence levels in all permutations. This suggests that the predicted part of banking integration by the exchange rate regime and legislative harmonization is a statistically and economically significant correlate of business cycle divergence.

The IV specifications in Table 8 allow us to perform the usual Sargan-Hansen test of over-identifying restrictions. While not perfect, this test enables to formally investigate the exclusivity assumption. Table 8 reports Hansen’s J-statistic score and the corresponding p-value of the null hypothesis of instrument validity. We can not reject the null hypothesis of (joint) instrument validity in all models.

5 Conclusion

Standard theory predicts that financial integration and business cycle synchronization should be negatively correlated, regardless of different mechanisms employed in different models. However, the empirical literature so far documents a significant positive association between the two.

In this paper, we use a unique confidential dataset of bilateral cross-country observations on banks’ international assets and liabilities over the past thirty years for twenty developed countries to examine the link between financial integration and business cycle synchronization. Our rich panel structure allows us to control for unobserved and hard-to-account-for country-pair specific factors, such as geography, information asymmetries, and cultural similarities. In addition, we control for global trends, that capture the increased coordination of monetary policy, the expansion of trade,
and other features of globalization. Both country-pair factors and global trends affect financial integration and output synchronization simultaneously. Thus, failing to control for these might yield a biased estimate from the cross-sectional estimation.

Our analysis shows that accounting for such factors is fundamental. While, employing a cross-sectional analysis delivers a positive association between integration and output co-movement, once we control for country-pair fixed-effects and time fixed effects in a panel framework, the theoretically predicted negative association emerges. The panel specifications reveal that a higher degree of cross-border financial integration leads to less synchronized, more divergent, output cycles. This result is robust to numerous permutations, such as accounting for inertia, and controlling for trade and specialization patterns.

To identify the one-way effect of financial integration on business cycle synchronization we also estimate instrumental variable specifications. We use two distinct instruments. The first one is an index of legislative-regulatory harmonization policies in financial services, whereas the second one is a measure of the flexibility of bilateral exchange rates. The first-stage specifications indicate that countries that either adopt more rigid exchange rate arrangements and/or harmonize legislation in financial services experience higher levels of financial integration. The second-stage estimates show that the component of bilateral financial integration explained by the nature of the exchange rate regime and/or legislative reforms in financial services is negatively associated with business cycle synchronization. Jointly the LS and the IV panel estimates demonstrate that in response to closer financial linkages output cycles become less synchronized.

The recent crisis shows that in an increasingly globalized world an asymmetric idiosyncratic shock, such as the one in the U.S. sub-prime loans market, can spread rapidly given the tight financial links between countries. Our paper documents that this does not necessarily imply increasingly synchronized business cycles across country-pairs given the negative partial impact of those same financial linkages on the output co-movement. As a result, our results suggest policy makers should not assume that business cycles are going to move together because of increased financial integration while designing the appropriate regulatory and policy framework.
6 Data Appendix

Synchronization Index 1 [SYNCH1]: The measure is defined as minus one times the divergence of (logarithmic) real p.c. GDP growth between each pair of countries in each year. \(SYNCH1_{i,j,t} \equiv -[(\ln Y_{i,t} - \ln Y_{i,t-1}) - (\ln Y_{j,t} - \ln Y_{j,t-1})]. \) For output (\(Y \)) we use World Bank’s real per capita GDP at constant prices series. This index follows Giannone, Lenza and Reichlin (2008). Source: World Bank’s World Development Indicators Database (2008).

Synchronization Index 2 [SYNCH2]: The measure follows Morgan, Rime, and Strahan (2004) and is constructed in two steps. First, we regress (logarithmic) real p.c. GDP growth separately for each country on country fixed-effects and year fixed-effects, i.e. \(\ln Y_{i,t} - \ln Y_{i,t-1} = \gamma_i + \phi_t + \nu_{i,t} \forall i,j. \) Second, we construct the business cycle synchronization index as the negative of the divergence of the residuals for each country-pair, i.e. \(SYNCH2_{i,j,t} \equiv -|\nu_{i,t} - \nu_{j,t}|. \) Source: World Bank’s World Development Indicators Database (2008).

Banking Integration 1 [BANKINT1]: Banking integration index based on bilateral cross-border holdings (stocks) of banks. Data on bank’s cross-border bilateral stocks of assets and liabilities come from the confidential version of BIS’s Locational Banking Statistics. For each country-pair and year there are up to four observations. i) asset holdings (stocks) of banks located in country \(i \) in all sectors of the economy in country \(j \); ii) asset holdings (stocks) of banks located in country \(j \) in all sectors of the economy in country \(i \); iii) liabilities (stocks) of banks located in country \(i \) to country \(j \). iv) liabilities (stocks) of banks located in country \(j \) to country \(i \). The data is originally expressed in current US dollars. First, we deflate the four series with the US deflator. Second, we standardize the series by dividing asset and liabilities with the sum of the two countries population in each year (using data from World Bank’s World Development Indicators Database). Third, we take the average of the log value of real bilateral assets and liabilities in each year. For further details, see Section 2.1. Source: Bank of International Settlements, Locational Banking Statistics (2008).

Banking Integration 2 [BANKINT2]: Banking integration index based on bilateral cross-
border gross flows of banks. Data on bank’s cross-border bilateral gross flows of assets and liabilities come from the BIS Locational Banking Statistics. For each country-pair and year there are up to four observations. i) asset flows of banks located in country i in all sectors of the economy in country j; ii) asset flows of banks located in country j in all sectors of the economy in country i; iii) liability flows of banks located in country i to country j. iv) liability flows of banks located in country j to country i. The data is originally expressed in current US dollars. First we deflate the four series with the US deflator. Second we take the absolute value of (net) flows. Third, we standardize the series, by dividing asset and liability flows with the sum of the two countries population in each year (using data from World Bank’s World Development Indicators Database). Fourth, we take the average of the log value of real bilateral gross flows in assets and liabilities in each year. For details see Section 2.1. Source: Bank of International Settlements, Locational Banking Statistics (2008). Source: Bank of International Settlements, Locational Banking Statistics (2008); for details on the BIS dataset see Wooldridge (2003) and BIS (2008).

Trade Integration [TRADE]: Index of bilateral trade intensity. The measure is the log of bilateral real (deflated with the US price deflator) exports and imports as a share of two countries’s GDP. This measure follows Calderon, Chong, and Stein (2007). Source: IMF’s Direction of Trade Database (2008).

Specialization [SPEC]: Index of industrial specialization, based on dissimilarities in production. The measure is the sum of the absolute differences in the share of industrial production for nine manufacturing sectors as a share of the total manufacturing production in each pair of countries in each year, i.e. $SPEC_{i,j,t} \equiv \sum_{n=1}^{N} |s^n_{i,t} - s^n_{j,t}|$. The index follows Krugman (1991), Imbs (2006), and Kalemli-Ozcan, Sørensen, and Yosha (2003). Source: United Nations Industrial Statistics Database (2008).

Legislative Harmonization in Financial Services [HARM]: Index of regulatory-legislative harmonization in financial services based on the transposition of the Directives of the Financial Services Action Plan (FSAP). The FSAP was a major policy initiative at the EU-level, launched in 1998 that included 27 EU-wide legislative acts (the Directives). Until the official completion of the plan in the end of 2003, the EU legislative bodies (the Commission and the Council) had initiated 21 of these laws. However, Directives do not become immediately enforceable across the EU. EU member states have considerable discretion in the transposition (adoption) of these acts. We construct the bilateral harmonization index in three steps. First, for each country we define 21 indicator variables that equal one starting at the year of the transposition of each Directive into national law and zero otherwise. Second, we create a country-time varying legislation measure
ranging from 0 to 21 by summing the values of the 21 indicator variables for each country \((LEX_{i,t})\). Third, we take the sum of the log value of the legislation measure for each country in each year (i.e. \(HARM_{i,j,t} \equiv \ln(LEX_{i,t}) + \ln(LEX_{j,t})\)). The remaining six Directives of the FSAP were passed in the period 2004 – 2007. We thus also construct an alternative index, based on the transposition of all the 27 Directives of the FSAP. Source: Kalemli-Ozcan, Papaioannou, and Peydró (2009), based on data from the EU Commission.

Exchange Rate Flexibility [ERSUM]: Bilateral index of the flexibility of the exchange rate, based on "fine" regime classification of Reinhart and Rogoff (2004). The country-specific index ranges from 1 to 14 where lower values suggest a more rigid regime. We construct the bilateral index by taking the sum of the log classification of countries \(i\) and \(j\) in the beginning (January) of each year \(t\) \((ERSUM = \ln(ER_{i,t}) + \ln(ER_{j,t}))\). Source: Ilzetzki, Reinhart, and Rogoff (2008) and Reinhart and Rogoff (2004).
References

Figure 1 plots the evolution of the two banking integration measures, expressed in levels (solid lines) and in logs (dashed lines). $BANKINT_1$ denotes the average of the logs of bilateral stocks of assets and liabilities normalized by the sum of the two countries' population. $BANKINT_2$ denotes the average of the logs of bilateral gross flows of assets and liabilities normalized by the sum of the two countries' population.
Figure 2 plots the evolution of the average value of each of the three synchronization measures employed in the empirical analysis across the 1978-2007 period. For each year the average is estimated across 190 country pairs (our sample spans 20 countries). SYNCH1 is the negative value of the absolute difference in real p.c. GDP growth between country i and country j in year t. SYNCH2 is the negative of the absolute difference of residual real p.c. GDP growth between country i and country j in year t. SYNCH3 is the correlation of the cyclical component of real p.c. GDP between country i and j in each five-year period (estimated with the Baxter and King Band-Pass filter (2,8)). The correlation is estimated with a five-year rolling window. See the Supplementary Appendix for the evolution fo the three synchronization measures for each of the twenty countries in our sample.
Table 1: Descriptive Statistics

<table>
<thead>
<tr>
<th></th>
<th>Obs.</th>
<th>mean</th>
<th>st. dev.</th>
<th>min</th>
<th>p25</th>
<th>p50</th>
<th>p75</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYNCH1</td>
<td>5376</td>
<td>-1.76</td>
<td>1.60</td>
<td>-13.95</td>
<td>-2.44</td>
<td>-1.31</td>
<td>-0.62</td>
<td>0.00</td>
</tr>
<tr>
<td>SYNCH2</td>
<td>5376</td>
<td>-1.61</td>
<td>1.45</td>
<td>-12.55</td>
<td>-2.19</td>
<td>-1.23</td>
<td>-0.55</td>
<td>0.00</td>
</tr>
<tr>
<td>BI1</td>
<td>5376</td>
<td>195.54</td>
<td>507.25</td>
<td>0.00</td>
<td>9.52</td>
<td>41.95</td>
<td>155.70</td>
<td>9110.02</td>
</tr>
<tr>
<td>BI2</td>
<td>5376</td>
<td>63.99</td>
<td>151.05</td>
<td>0.04</td>
<td>4.87</td>
<td>18.37</td>
<td>62.62</td>
<td>4065.77</td>
</tr>
<tr>
<td>ERFSUM</td>
<td>5376</td>
<td>14.152</td>
<td>6.265</td>
<td>2.00</td>
<td>12.00</td>
<td>15.00</td>
<td>19.00</td>
<td>28</td>
</tr>
<tr>
<td>FSAPSUM</td>
<td>5376</td>
<td>4.250</td>
<td>10.206</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td>42</td>
</tr>
</tbody>
</table>

The table reports summary statistics of the main variables used in the empirical analysis. **SYNCH1** is the negative value of the absolute difference in real p.c. GDP growth between country *i* and country *j* in year *t*. **SYNCH2** is the negative of the absolute difference of residual real p.c. GDP growth between country *i* and country *j* in year *t*. **BI1** denotes the average of bilateral stocks of assets and liabilities of countries *i* and *j* normalized by the sum of the two countries' population in year *t*. In the empirical specifications we use the log of this measure (**BANKINT1**). **BI2** denotes the average bilateral gross flows of assets and liabilities of countries *i* and *j* normalized by the sum of the two countries' population in year *t*. In the empirical specifications we use the log of this measure (**BANKINT2**). **ERSUM** denotes the sum of the values of the Reinhart and Rogoff (2004) exchange rate classification of the countries *i* and *j* in the beginning of each year *t*. For each country the Reinhart and Rogoff (fine) grid ranges from 1 to 14 with higher values indicating a more flexible currency arrangement. **FSAPSUM** is a bilateral index that sums the number of EU laws in financial services that member countries have adopted in each year. These laws (Directives) were part of the Financial Services Action Plan (FSAP), initiated by the EU Commission in 1998 to integrate financial services in Europe. The value for each country ranges from 0 to 21, with higher values suggesting a higher degree of harmonization. For details on the construction of all variables see Section 2.2 and the Data Appendix.
Table 2: Banking Integration and Business Cycle (GDP) Synchronization

<table>
<thead>
<tr>
<th>Dependent Variable:</th>
<th>Synchronization Measure 1: Absolute differences in GDP growth</th>
<th>Synchronization Measure 2: Absolute value of residual differences in GDP growth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integration Measure:</td>
<td>(BANKINT_1)</td>
<td>(BANKINT_2)</td>
</tr>
<tr>
<td>Banking Integration ((BANKINT))</td>
<td>0.066</td>
<td>-0.186</td>
</tr>
<tr>
<td>(0.022)</td>
<td>(0.039)</td>
<td>(0.029)</td>
</tr>
<tr>
<td>2.96</td>
<td>-4.82</td>
<td>2.23</td>
</tr>
<tr>
<td>Year FE</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Country-pair FE</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.044</td>
<td>0.131</td>
</tr>
<tr>
<td>Observations</td>
<td>5,376</td>
<td>5,376</td>
</tr>
<tr>
<td>Country-pairs</td>
<td>190</td>
<td>190</td>
</tr>
</tbody>
</table>

Odd numbered columns report cross-sectional (between) coefficients. Even numbered columns report panel fixed-effect (within) coefficients. These models include a vector of country-pair fixed-effects and a vector of year fixed-effects. In the panel models standard errors are adjusted for country-pair level heteroskedasticity and autocorrelation. In specifications (1)-(4) the dependent variable is minus one times the absolute difference in real p.c. GDP growth between country \(i \) and country \(j \) in year \(t \). In specifications (5)-(8) the dependent variable is minus one times the absolute difference of residual real p.c. GDP growth between country \(i \) and country \(j \) in year \(t \).

\(BANKINT_1 \) denotes the one year lagged value of the average of the logs of bilateral stocks of assets and liabilities normalized by the sum of the two countries' population in year \(t \). \(BANKINT_2 \) denotes the one year lagged value of the average of the logs of bilateral gross flows of assets and liabilities normalized by the sum of the two countries' population in year \(t \). The Data Appendix and Section 3.1. gives details on the construction and the sources of all variables. The Table also gives the number of country-pairs, the number of observations, the between R-squared (for the cross-sectional models) and the within R-squared (for the panel fixed-effect specifications).
Table 3: Banking Integration and Business Cycle Synchronization (GDP): Dynamic Panel Models

<table>
<thead>
<tr>
<th>Dependent Variable:</th>
<th>Synchronization Measure 1</th>
<th></th>
<th>Synchronization Measure 2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Integration Measure:</td>
<td>SYNCH1</td>
<td>SYNCH2</td>
<td>SYNCH1</td>
<td>SYNCH2</td>
</tr>
<tr>
<td>BANKINT1</td>
<td>BANKINT2</td>
<td>BANKINT1</td>
<td>BANKINT2</td>
<td></td>
</tr>
<tr>
<td>Lag (1) Synchronization (SYNCH)</td>
<td>0.209</td>
<td>0.211</td>
<td>0.198</td>
<td>0.197</td>
</tr>
<tr>
<td></td>
<td>(0.021)</td>
<td>(0.021)</td>
<td>(0.019)</td>
<td>(0.019)</td>
</tr>
<tr>
<td></td>
<td>10.01</td>
<td>10.06</td>
<td>10.39</td>
<td>10.4</td>
</tr>
<tr>
<td>Lag (2) Synchronization (SYNCH)</td>
<td>0.078</td>
<td>0.080</td>
<td>-0.032</td>
<td>-0.032</td>
</tr>
<tr>
<td></td>
<td>(0.018)</td>
<td>(0.018)</td>
<td>(0.013)</td>
<td>(0.013)</td>
</tr>
<tr>
<td></td>
<td>4.33</td>
<td>4.36</td>
<td>-2.46</td>
<td>-2.53</td>
</tr>
<tr>
<td>Lag (1) Banking Integration (BANKINT)</td>
<td>-0.108</td>
<td>-0.098</td>
<td>-0.063</td>
<td>-0.074</td>
</tr>
<tr>
<td></td>
<td>(0.029)</td>
<td>(0.031)</td>
<td>(0.028)</td>
<td>(0.030)</td>
</tr>
<tr>
<td></td>
<td>-3.67</td>
<td>-3.12</td>
<td>-2.29</td>
<td>-2.46</td>
</tr>
<tr>
<td>Long-run effect - Banking Integration</td>
<td>-0.152</td>
<td>-0.138</td>
<td>-0.076</td>
<td>-0.089</td>
</tr>
<tr>
<td>F-score</td>
<td>13.04</td>
<td>9.37</td>
<td>5.29</td>
<td>5.98</td>
</tr>
<tr>
<td>p-value</td>
<td>0.000</td>
<td>0.000</td>
<td>0.023</td>
<td>0.015</td>
</tr>
<tr>
<td>Year FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Country-pair FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.188</td>
<td>0.187</td>
<td>0.167</td>
<td>0.168</td>
</tr>
<tr>
<td>Observations</td>
<td>5,029</td>
<td>5,024</td>
<td>5,029</td>
<td>5,024</td>
</tr>
<tr>
<td>Country-pairs</td>
<td>190</td>
<td>190</td>
<td>190</td>
<td>190</td>
</tr>
</tbody>
</table>

The Table reports panel fixed-effect coefficients. All models include a vector of country-pair fixed-effects and a vector of year fixed-effects. Standard errors are adjusted for country-pair level heteroskedasticity and autocorrelation and corresponding t-statistics are reported below the estimates. In specifications (1)-(2) the dependent variable is minus one times the absolute difference in real p.c. GDP growth between country \(i \) and country \(j \) in year \(t \) (SYNCH1). In specifications (3)-(4) the dependent variable is minus one times the absolute difference of residual real p.c. GDP growth between country \(i \) and country \(j \) in year \(t \) (SYNCH2). All specifications include two lags of the dependent variable.

\(\text{BANKINT1} \) denotes the one year lagged value of the average of the logs of bilateral stocks of assets and liabilities normalized by the sum of the two countries' population in year \(t \). \(\text{BANKINT2} \) denotes the one year lagged value of the average of the logs of bilateral gross flows in assets and liabilities normalized by the sum of the two countries' population in year \(t \). The Data Appendix and Section 3.1 gives details on the construction and the sources of all variables. The Table also gives the long-run coefficient of banking integration and the corresponding \(F \)-score and \(p \)-value.
<table>
<thead>
<tr>
<th>Dependent Variable:</th>
<th>Synchronization Measure 3</th>
<th>Synchronization Measure 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SYNCH3</td>
<td>SYNCH3</td>
</tr>
<tr>
<td>Integration Measure:</td>
<td>BANKINT1</td>
<td>BANKINT2</td>
</tr>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>Banking Integration</td>
<td>0.031</td>
<td>-0.054</td>
</tr>
<tr>
<td>(BANKINT)</td>
<td>(0.008)</td>
<td>(0.020)</td>
</tr>
<tr>
<td></td>
<td>3.98</td>
<td>-2.68</td>
</tr>
<tr>
<td>Trade</td>
<td>5.015</td>
<td>-1.355</td>
</tr>
<tr>
<td>(TRADE)</td>
<td>(1.208)</td>
<td>(1.405)</td>
</tr>
<tr>
<td></td>
<td>4.15</td>
<td>-0.96</td>
</tr>
<tr>
<td>Specialization</td>
<td>-0.042</td>
<td>-0.024</td>
</tr>
<tr>
<td>(SPEC)</td>
<td>(0.019)</td>
<td>(0.029)</td>
</tr>
<tr>
<td></td>
<td>-2.22</td>
<td>-0.83</td>
</tr>
<tr>
<td>Period FE</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Country-pair FE</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.078</td>
<td>0.226</td>
</tr>
<tr>
<td>Observations</td>
<td>1,118</td>
<td>1,118</td>
</tr>
<tr>
<td>Country-pairs</td>
<td>190</td>
<td>190</td>
</tr>
</tbody>
</table>

Odd numbered columns report cross-sectional (between) coefficients. Even numbered columns report panel fixed-effect coefficients (within). These models include a vector of country-pair fixed-effects and a vector of period fixed-effects. In the panel models standard errors are adjusted for country-pair level heteroskedasticity and autocorrelation and corresponding t-statistics are reported below the estimates. In all specifications the dependent variable is the correlation of the cyclical component of real p.c. GDP between country i and j in each five-year period (SYNCH3; estimated with the Baxter and King Band-Pass filter (2,8)).

BANKINT1 denotes the average of the logs of bilateral stocks of assets and liabilities normalized by the sum of the two countries' population. BANKINT2 denotes the average of the logs of bilateral gross flows in assets and liabilities normalized by the sum of the two countries' population. TRADE denotes the log of real bilateral imports and exports as a share of the two countries' GDP. SPEC is an index of specialization that reflects the dis-similarities in industrial production (in manufacturing) between the two countries in each period. All independent variables are averaged over each 5-year period. The Data Appendix and Section 3.1. gives details on the construction and the sources of all variables. The Table also gives the number of country-pairs, the number of observations, the between R-squared (for the cross-sectional models) and the within R-squared (for the panel fixed-effect specifications).
Table 5: Financial Sector Legislation Harmonization, Banking Integration and Business Cycle
Synchronization (GDP):
Panel Instrumental Variables (IV) Fixed-Effects Estimates with Annual Data

<table>
<thead>
<tr>
<th>Integration Measure:</th>
<th>Static Panel Estimates</th>
<th>Dynamic Panel Estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependent Variable:</td>
<td>SYNCH1 (1) SYNCH2 (2)</td>
<td>SYNCH1 (5) SYNCH2 (6)</td>
</tr>
<tr>
<td>SYNCH1 (3) SYNCH2 (4)</td>
<td>SYNCH1 (7) SYNCH2 (8)</td>
<td></td>
</tr>
</tbody>
</table>

Panel A: 2SLS Estimates: Dependent Variable is Synchronization

<table>
<thead>
<tr>
<th>Banking Integration (BANKINT)</th>
<th>BANKINT1</th>
<th>BANKINT2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(BANKINT)</td>
<td>-0.263</td>
<td>-0.371</td>
</tr>
<tr>
<td></td>
<td>(0.160)</td>
<td>(0.151)</td>
</tr>
<tr>
<td></td>
<td>-1.64</td>
<td>-2.46</td>
</tr>
</tbody>
</table>

Panel B: 1st Stage Estimates and Diagnostics: Dependent Variable is Banking Integration

Financial Sector Harmonization (HARM)	0.225	0.225
	(0.049)	(0.049)
F-score	20.77	20.77
p-value	0.00	0.00

Year FE | Yes | Yes | Yes | Yes |
Country-pair FE | Yes | Yes | Yes | Yes |
Observations | 5376 | 5376 | 5376 | 5376 |
Country-pairs | 190 | 190 | 190 | 190 |

The Table reports (static and dynamic) panel fixed-effect instrumental variable coefficients. Panel A reports 2nd-Stage estimates. Panel B reports 1st-stage estimates and regression diagnostics. First stage regression includes all the controls from the second stage. All models include a vector of country-pair fixed-effects and a vector of year fixed-effects. Standard errors are adjusted for country-pair level heteroskedasticity and autocorrelation and corresponding t-statistics are reported below the estimates. In specifications (1), (3), (5) and (7) the dependent variable is minus one times the absolute difference in real p.c. GDP growth between country i and country j in year t. In specifications (2), (4), (6) and (8) the dependent variable is minus one times the absolute difference of residual real p.c. GDP growth between country i and country j in year t. BANKINT1 denotes the one year lagged value of the average of the logs of bilateral stocks of assets and liabilities normalized by the sum of the two countries’ population in year t. BANKINT2 denotes the one year lagged value of the average of the logs of bilateral gross flows in assets and liabilities normalized by the sum of the two countries’ population in year t. The two banking integration indicators are instrumented with a bilateral time-varying measure of harmonization of legislative and regulatory financial policies (conducted in the context of the Financial Services Action Plan). The Data Appendix and Section 3.1. gives details on the construction and the sources of all variables.
Table 6: Exchange Rate Regime, Banking Integration and Business Cycle Synchronization (GDP): Panel Instrumental Variables (IV) Fixed-Effects Estimates with Annual Data

<table>
<thead>
<tr>
<th>Integration Measure:</th>
<th>Static Panel Estimates</th>
<th>Dynamic Panel Estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BANKINT1</td>
<td>BANKINT2</td>
</tr>
<tr>
<td>Dependent Variable:</td>
<td>SYNCH1</td>
<td>SYNCH2</td>
</tr>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>Banking Integration</td>
<td>-0.248</td>
<td>-0.259</td>
</tr>
<tr>
<td>(BANKINT)</td>
<td>(0.150)</td>
<td>(0.149)</td>
</tr>
<tr>
<td></td>
<td>-1.65</td>
<td>-1.74</td>
</tr>
<tr>
<td></td>
<td>(0.125)</td>
<td>(0.118)</td>
</tr>
<tr>
<td></td>
<td>-2.48</td>
<td>-2.32</td>
</tr>
<tr>
<td></td>
<td>(0.132)</td>
<td>(0.124)</td>
</tr>
</tbody>
</table>

Panel A: 2SLS Estimates: Dependent Variable is Synchronization

- **Banking Integration (BANKINT)**
- **SYNCH1**
- **SYNCH2**

Panel B: 1st Stage Estimates and Diagnostics: Dependent Variable is Banking Integration

- **Exchange Rate Regime Flexibility (ERSUM)**
- **F-score**
- **p-value**
- **Year FE**
- **Country-pair FE**
- **Observations**
- **Country-pairs**

The Table reports (static and dynamic) panel fixed-effect instrumental variable coefficients. Panel A reports 2nd-stage estimates. Panel B reports 1st-stage estimates and regression diagnostics. First stage regression includes all controls from the second stage. All models include a vector of country-pair fixed-effects and a vector of year fixed-effects. Standard errors are adjusted for country-pair level heteroskedasticity and autocorrelation and corresponding t-statistics are reported below the estimates. In specifications (1), (3), (5) and (7) the dependent variable is minus one times the absolute difference in real p.c. GDP growth between country i and country j in year t. In specifications (2), (4), (6) and (8) the dependent variable is minus one times the absolute difference of residual real p.c. GDP growth between country i and country j in year t.

BANKINT1 denotes the one year lagged value of the average of the logs of bilateral stocks (holdings) in assets and liabilities normalized by the sum of the two countries' population in year t. **BANKINT2** denotes the one year lagged value of the average of the logs of bilateral gross flows in assets and liabilities normalized by the sum of the two countries' population in year t. The two banking integration indicators are instrumented with a bilateral time-varying measure of the flexibility of the exchange rate regime (ERSUM). The Data Appendix and Section 3.1. gives details on the construction and the sources of all variables.
Table 7: Exchange Rate Regime, Banking Integration and Business Cycle Synchronization: Panel Instrumental Variables (IV) Fixed-Effects Estimates in 5-year periods

<table>
<thead>
<tr>
<th>Integration Measure:</th>
<th>BANKINT1</th>
<th>BANKINT2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependent Variable:</td>
<td>SYNCH3 (1)</td>
<td>SYNCH3 (2)</td>
</tr>
<tr>
<td>Banking Integration (BANKINT)</td>
<td>-0.227 (0.074)</td>
<td>-0.383 (0.154)</td>
</tr>
<tr>
<td></td>
<td>-3.06</td>
<td>-2.49</td>
</tr>
<tr>
<td>Trade (TRADE)</td>
<td>0.167 (1.755)</td>
<td>0.473 (1.723)</td>
</tr>
<tr>
<td></td>
<td>0.10</td>
<td>0.27</td>
</tr>
<tr>
<td>Specialization (SPEC)</td>
<td>-0.091 (0.049)</td>
<td>-0.066 (0.041)</td>
</tr>
<tr>
<td></td>
<td>-1.88</td>
<td>-1.60</td>
</tr>
</tbody>
</table>

Panel A: 2SLS Estimates: Dependent Variable is Synchronization

Panel B: 1st Stage Estimates and Diagnostics

Exchange Rate Regime Flexibility (ERSUM)	-0.283 (0.064)	-0.201 (0.069)	-0.258 (0.050)	-0.201 (0.051)
	-4.42	-2.92	-5.16	-3.95
Trade (TRADE)	3.4967 (2.9100)	3.4967 (2.9100)		
	1.20	2.06		
Specialization (SPEC)	-0.2285 (0.0527)	-0.1637 (0.0376)		
	-4.34	-4.35		

F -score 18.55 8.50 26.67 15.63
p -value 0.00 0.00 0.00 0.00

Period FE Yes Yes Yes Yes
Country-pair FE Yes Yes Yes Yes
Observations 1118 817 1116 814
Country-pairs 190 187 190 186
Panel A reports 2nd-stage estimates. Panel B reports 1st-stage estimates and regression diagnostics. First stage regression include all controls from the second stage. The dependent variable is the correlation of the cyclical component of real p.c. GDP between country i and j in each five-year period (estimated with the Baxter and King Band-Pass filter (2,8)). The standard errors are adjusted as in the previous tables.

`BANKINT1` denotes the average of the logs of bilateral stocks of assets and liabilities normalized by the sum of the two countries' population. `BANKINT2` denotes the average of the logs of bilateral gross flows in assets and liabilities normalized by the sum of the two countries' population. `TRADE` denotes the log of real bilateral imports and exports as a share of the two countries' GDP. `SPEC` is an index of specialization that reflects the dis-similarities in industrial production between the two countries in each period. The Data Appendix and Section 3.1. give details on the construction and the sources of all variables. All independent variables are averaged over each 5-year period. The two banking integration indicators are instrumented with a bilateral time-varying measure of the flexibility of the exchange rate regime.
Table 8: Exchange Rate Regime, Financial Sector Legislation Harmonization, Banking Integration and Business Cycle Synchronization (GDP)
Panel Instrumental Variables (IV) Fixed-Effects Estimates with Annual Data

<table>
<thead>
<tr>
<th>Integration Measure:</th>
<th>Static Panel Estimates</th>
<th>Dynamic Panel Estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BANKINT1</td>
<td>BANKINT2</td>
</tr>
<tr>
<td>Dependent Variable:</td>
<td>SYNCH1</td>
<td>SYNCH2</td>
</tr>
<tr>
<td></td>
<td>SYNCH1</td>
<td>SYNCH2</td>
</tr>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td></td>
<td>(3)</td>
<td>(4)</td>
</tr>
<tr>
<td></td>
<td>(5)</td>
<td>(6)</td>
</tr>
<tr>
<td></td>
<td>(7)</td>
<td>(8)</td>
</tr>
</tbody>
</table>

Panel A: 2SLS Estimates: Dependent Variable is Synchronization

<table>
<thead>
<tr>
<th>Banking Integration (BANKINT)</th>
<th>(BANKINT1)</th>
<th>(BANKINT2)</th>
<th>(BANKINT1)</th>
<th>(BANKINT2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-0.2534</td>
<td>-0.3006</td>
<td>-0.2914</td>
<td>-0.309</td>
</tr>
<tr>
<td></td>
<td>(0.1401)</td>
<td>(0.1372)</td>
<td>(0.1190)</td>
<td>(0.1159)</td>
</tr>
<tr>
<td></td>
<td>-1.81</td>
<td>-2.19</td>
<td>-2.45</td>
<td>-2.54</td>
</tr>
<tr>
<td></td>
<td>(0.5587)</td>
<td>(0.5587)</td>
<td>(0.0579)</td>
<td>(0.0453)</td>
</tr>
<tr>
<td></td>
<td>3.04</td>
<td>3.04</td>
<td>3.93</td>
<td>4.23</td>
</tr>
</tbody>
</table>

Panel B: 1st Stage Estimates and Diagnostics: Dependent Variable is Banking Integration

<table>
<thead>
<tr>
<th>Exchange Rate Regime Flexibility (ERSUM)</th>
<th>(ERSUM)</th>
<th>(ERSUM)</th>
<th>(ERSUM)</th>
<th>(ERSUM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.1301</td>
<td>0.1301</td>
<td>0.1439</td>
<td>0.1439</td>
</tr>
<tr>
<td></td>
<td>(0.5500)</td>
<td>(0.5500)</td>
<td>(0.0424)</td>
<td>(0.0424)</td>
</tr>
<tr>
<td></td>
<td>2.61</td>
<td>2.61</td>
<td>3.39</td>
<td>3.39</td>
</tr>
<tr>
<td></td>
<td>(0.0500)</td>
<td>(0.0500)</td>
<td>(0.0490)</td>
<td>(0.0490)</td>
</tr>
<tr>
<td></td>
<td>11.87</td>
<td>11.87</td>
<td>14.41</td>
<td>14.06</td>
</tr>
<tr>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>0.013</td>
<td>0.784</td>
<td>0.466</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>0.91</td>
<td>0.38</td>
<td>0.49</td>
<td>0.99</td>
</tr>
<tr>
<td></td>
<td>0.564</td>
<td>0.896</td>
<td>0.851</td>
<td>0.631</td>
</tr>
<tr>
<td></td>
<td>0.45</td>
<td>0.34</td>
<td>0.36</td>
<td>0.43</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>5376</td>
<td>5376</td>
<td>5376</td>
<td>5376</td>
</tr>
<tr>
<td></td>
<td>5376</td>
<td>5376</td>
<td>5376</td>
<td>5376</td>
</tr>
<tr>
<td></td>
<td>5029</td>
<td>5029</td>
<td>5024</td>
<td>5024</td>
</tr>
<tr>
<td></td>
<td>190</td>
<td>190</td>
<td>190</td>
<td>190</td>
</tr>
<tr>
<td></td>
<td>190</td>
<td>190</td>
<td>190</td>
<td>190</td>
</tr>
</tbody>
</table>
Panel A reports 2nd-stage estimates. Panel B reports 1st-stage estimates and regression diagnostics. First stage regression includes all controls from the second stage. In specifications (1), (3), (5) and (7) the dependent variable is minus one times the absolute difference in real p.c. GDP growth between country i and country j in year t. In specifications (2), (4), (6) and (8) the dependent variable is minus one times the absolute difference of residual real p.c. GDP growth between country i and country j in year t.

$BANKINT1$ denotes the one year lagged value of the average of the logs of bilateral stocks of assets and liabilities normalized by the sum of the two countries' population in year t. $BANKINT2$ denotes the one year lagged value of the average of the logs of bilateral gross flows in assets and liabilities normalized by the sum of the two countries' population in year t. The two banking integration indicators are instrumented with the following instruments: (i) bilateral time-varying measure of the flexibility of the exchange rate regime; (ii) a bilateral time-varying measure of harmonization of legislative and regulatory financial policies (conducted in the context of the Financial Services Action Plan). The Data Appendix and Section 3.1. gives details on the construction and the sources of all variables. The table also reports the Sargan-Hansen test of over-identifying restrictions. Under the null hypothesis all instruments are valid.
Supplementary Appendix

Appendix Figure 1.1

Australia

Appendix Figure 1.2

Austria
Supplementary Appendix

Appendix Figure 1.5

Switzerland

Appendix Figure 1.6

Germany
Supplementary Appendix

Appendix Figure 1.7

Denmark

Appendix Figure 1.8

Spain
Supplementary Appendix

Appendix Figure 1.11

United Kingdom

Appendix Figure 1.12

Greece
Supplementary Appendix

Appendix Figure 1.15

Japan

Appendix Figure 1.16

Luxemburg
Supplementary Appendix

Appendix Figure 1.19

Sweden

Appendix Figure 1.20

United States of America
Supplementary Appendix

Appendix Figure 2 - Scatter Plot for Benchmark Cross-Sectional ("between") Specification

Supplementary Appendix Figure 2 plots the benchmark cross-sectional specification in column (1) of Table 2. The cross-sectional regression is estimated in a sample of 190 country pairs. The dependent variable is minus one times the absolute difference in real p.c. GDP growth between country i and country j averaged over the period 1978-2007 (SYNCH1). The regressor is the log of bilateral stocks of assets and liabilities normalized by the sum of the two countries' population averaged over the period 1978-2007 (BANKINT1).
Supplementary Appendix

Appendix Figure 3 - Scatter Plot for Benchmark Panel ("within") Specification

Supplementary Appendix Figure 2 plots the benchmark panel specification in column (2) of Table 2. The panel regression is estimated in a sample of 190 country pairs over the period 1978-2007. The specification includes a vector of country-pair fixed-effects and a vector of time (year) fixed-effects. The dependent variable is minus one times the absolute difference in real p.c. GDP growth between country \(i \) and country \(j \) in year \(t \) (\(SYNCHI \)). The regressor is the log of bilateral stocks of assets and liabilities normalized by the sum of the two countries' population averaged in year \(t \) (\(BANKINTI \)).