AUEB at BioASQ 6: Document and Snippet Retrieval

Georgios-Ioannis Brokos1, Polyvios Liosis1, Ryan McDonald1,3, Dimitris Pappas1,2 and Ion Androutsopoulos1

1Dept. of Informatics, Athens University of Economics and Business, Greece
2Institute for Language and Speech Processing, Research Center ‘Athena’, Greece
3Google AI

Abstract

We present AUEB’s submissions to the BioASQ 6 document and snippet retrieval tasks (parts of Task 6b, Phase A). Our models use novel extensions to deep learning architectures that operate solely over the text of the query and candidate document/snippets. Our systems scored at the top or near the top for all batches of the challenge, highlighting the effectiveness of deep learning for these tasks.

1 Introduction

BioASQ (Tsatsaronis et al., 2015) is a biomedical document classification, document retrieval, and question answering competition, currently in its sixth year.1 We provide an overview of AUEB’s submissions to the document and snippet retrieval tasks (parts of Task 6b, Phase A) of BioASQ 6.2

In these tasks, systems are provided with English biomedical questions and are required to retrieve relevant documents and document snippets from a collection of MEDLINE/PubMed articles.3

We used deep learning models for both document and snippet retrieval. For document retrieval, we focus on extensions to the Position-Aware Convolutional Recurrent Relevance (PACRR) model of Hui et al. (2017) and, mostly, the Deep Relevance Matching Model (DRMM) of Guo et al. (2016), whereas for snippet retrieval we based our work on the Basic Bi-CNN (BCNN) model of Yin et al. (2016). Little task-specific pre-processing is employed and the models operate solely over the text of the query and candidate document/snippets.

Overall, our systems scored at the top or near the top for all batches of the challenge. In previous years of the BioASQ challenge, the top scoring systems used primarily traditional IR techniques (Jin et al., 2017). Thus, our work highlights that end-to-end deep learning models are an effective approach for retrieval in the biomedical domain.

2 Document Retrieval

For document retrieval, we investigate new deep learning architectures focusing on term-based interaction models, where query terms (q-terms for brevity) are scored relative to a document’s terms (d-terms) and their scores are aggregated to produce a relevance score for the document. All models use pre-trained embeddings for all q-terms and d-terms. Details on data resources and data pre-processing are given in Section 5.1.

2.1 PACRR-based Models

The first model we investigate is PACRR (Hui et al., 2017). In this model, a query-document term similarity matrix sim is first computed (Fig. 1, left). Each cell (i,j) of sim contains the cosine similarity between the embeddings of a q-term q_i and a d-term d_j. To keep the dimensions $l_q \times l_d$ of sim fixed across queries and documents of varying lengths, queries are padded to the maximum number of q-terms l_q, and only the first l_d terms per document are retained.4 Then, convolutions of different kernel sizes $n \times n$ ($n = 2, \ldots, l_g$) are applied to sim to capture n-gram query-document similarities. For each size $n \times n$, multiple kernels (filters) are used. Max pooling is then applied along the dimension of the filters (max value of all filters of the same size), followed by k-max pooling along the dimension of d-terms to capture the strongest k signals between each q-term and all the d-terms. The resulting matrices (one per kernel

1Consult http://bioasq.org/.
2For further information on the BioASQ 6 tasks, see http://bioasq.org/participate/challenges.
3http://www.ncbi.nlm.nih.gov/pubmed/.
4We use PACRR-first, which Hui et al. (2017) recommend when documents fit in memory, as in our experiments.
size) are concatenated into a single matrix where each row is a document-aware q-term encoding (Fig. 1); the IDF of the q-term is also appended, normalized by applying a softmax across the IDs of all the q-terms. Following Hui et al. (2018), we concatenate the rows of the resulting matrix into a single vector, which is passed to an MLP that produces a query-document relevance score.\footnote{Hui et al. (2017) used an additional LSTM, which was later replaced by the final concatenation (Hui et al., 2018).}

Instead of using an MLP to score the concatenation of all the (document-aware) q-term encodings, a simple extension we found effective was to use an MLP to independently score each q-term encoding (the same MLP for all q-terms, Fig. 1); the resulting scores are aggregated via a linear layer. This version, TERM-PACRR, performs better than PACRR, using the same number of hidden layers in the MLPs. Likely this is due to the fewer parameters of TERM-PACRR’s MLP, which is shared across the q-term representations and operates on shorter input vectors. Indeed, in our early experiments TERM-PACRR was less prone to overfitting.\footnote{In the related publication of McDonald et al. (2018) TERM-PACRR is identical to the PACRR-DRMM model.}

2.2 DRMM-based Models

The second model we investigate is DRMM (Guo et al., 2016) (Fig. 2). The original DRMM uses pre-trained word embeddings for q-terms and d-terms, and (bucketed) cosine similarity histograms (outputs of \(\otimes\) nodes in Fig. 2). Each histogram captures the similarity of a q-term to all the d-terms of a particular document. The histograms, which in this model are the document-aware q-term encodings, are fed to an MLP (dense layers of Fig. 2) that produces the (document-aware) score of each q-term. Each q-term score is then weighted using a gating mechanism (topmost box nodes of Fig. 2) that examines properties of the q-term to assess its importance for ranking (e.g., common words are less important). The sum of the weighted q-term scores is the relevance score of the document.

For gating (topmost box nodes of Fig. 2), Guo et al. (2016) use a linear self-attention:

\[
g_i = \text{softmax} \left(w_g^T \phi_g(q_i); q_1, \ldots, q_n \right)
\]

\(\phi_g(q_i)\) is the embedding \(e(q_i)\) of the \(i\)-th q-term, or its IDF, \(\text{idf}(q_i)\); \(w_g\) is a weights vector. We found that \(\phi_g(q_i) = [e(q_i); \text{idf}(q_i)]\), where ‘;’ is concatenation, was optimal for all DRMM-based models.

2.2.1 ABEL-DRMM

The original DRMM (Guo et al., 2016) has two shortcomings. The first one is that it ignores entirely the contexts where the terms occur, in contrast to position-aware models such as PACRR (Section 2.1) or those based on recurrent representations (Palangi et al., 2016). Secondly, the histogram representation for document-aware q-term encodings is not differentiable, so it is not possible to train the network end-to-end, if one wished to backpropagate all the way to word embeddings.

To address the first shortcoming, we add an encoder (Fig. 3) to produce the context-sensitive encoding of each q-term or d-term from the pre-trained embeddings of the previous, current, and next term in a particular query or document. A single dense layer with residuals is used, in effect a one-layer Temporal Convolutional Network (TCN) (Bai et al., 2018) without pooling or dilation. The number of convolutional filters equals the dimen-
The Hadamard product (element-wise multiplication, \(\otimes \)) between the document representation \(d_q \), and the q-term encoding \(c(q_i) \) is then computed and used as the fixed-dimension document-aware encoding \(\phi_H(q_i) \) of \(q_i \) (Fig. 4):

\[
\phi_H(q_i) = d_q \otimes c(q_i)
\]

The \(\otimes \) nodes and lower parts of the DRMM network of Fig. 2 are now replaced by (multiple copies of) the sub-network of Fig. 4 (one copy per q-term), with the \(\otimes \) nodes replacing the \(\otimes \) nodes. We call the resulting model Attention-Based Element-wise DRMM (ABEL-DRMM).

Intuitively, if the document contains one or more terms \(d_j \) that are similar to \(q_i \), the attention mechanism will have emphasized mostly those terms and, hence, \(d_{q_i} \) will be similar to \(c(q_i) \), otherwise not. This similarity could have been measured by the cosine similarity between \(d_{q_i} \) and \(c(q_i) \), but the cosine similarity assigns the same weight to all the dimensions, i.e., to all the element-wise products in \(\phi_H(q_i) \). By using the Hadamard product, we pass on to the upper layers of DRMM (the dense layers of Fig. 2), which score each q-term with respect to the document, all the element-wise products of \(\phi_H(q_i) \), allowing the upper layers to learn which element-wise products (or combinations of them) are important when matching a q-term to the document.

2.2.2 ABEL-DRMM extensions

We experimented with two extensions to ABEL-DRMM. The first is a density-based extension that considers all the windows of \(l_w \) consecutive tokens of the document and computes the ABEL-DRMM relevance score per window. The final relevance score of a document is the sum of the original ABEL-DRMM score computed over the entire document plus the maximum ABEL-DRMM score over all the document’s windows. The intuition is to reward not only documents that match the query, but also those that match it in a dense window.
The second extension is to compute a confidence score per document and only return documents with scores above a threshold. We apply a softmax over the ABEL-DRMM scores of the top t_d documents and return only documents from the top t_d with normalized scores exceeding a threshold t_c. While this will always hurt metrics like Mean Average Precision (MAP) when evaluating document retrieval, it has the potential to improve the precision of downstream components, in our case snippet retrieval, which in fact we observe.

3 Snippet Retrieval

For the snippet retrieval task, we used the ‘basic CNN’ (BCNN) network of the broader ABCNN model (Yin et al., 2016), which we combined with a post-processing stage, as discussed below. The input of snippet retrieval is an English question and text snippets (e.g., sentences) from documents that the document retrieval component returned as relevant to the question. The goal is to rank the snippets, so that snippets that human experts selected as relevant to the question will be ranked higher than others. In BioASQ, human experts are instructed to select relevant snippets consisting of one or more consecutive sentences. For training purposes, we split the relevant documents into sentences, and consider sentences that overlap the gold snippets (the ones selected by the human experts) as relevant snippets, and the remaining ones as irrelevant. At inference time, documents returned by the document retrieval model as relevant are split into sentences, and these sentences are ranked by the system. For details on sentence splitting, tokenization, etc., see Section 5.1.

3.1 BCNN Model

BCNN receives as input two sequences of terms (tokens), in our case a question (query) and a sentence from a document. All terms are represented by pre-trained embeddings (Section 5.1). Snippet sequences were truncated (or zero padded) to be of uniform length. A convolution layer with multiple filters, each of the same width w, is applied to each of the two input sequences, followed by a windowed-average pooling layer over the same filter width to produce a feature map (per filter) of the same dimensionality as the input to the convolution layer. Consequently, we can stack an arbitrary number of convolution/pooling blocks in order to extract increasingly abstract features.

An average pooling layer is then applied to the entire output of the last convolution/pooling block (Fig. 5) to obtain a feature vector of the query and snippet, respectively. When multiple convolution filters are used (Fig. 5 illustrates only one), we obtain a different feature vector from each filter (for the query and snippet, respectively), and the feature vectors from the different filters are concatenated, again obtaining a single feature vector for the query and snippet, respectively. Similarity scores are then computed from the query and snippet feature vectors, and these are fed into a linear logistic regression layer. One critical implementation detail from the original BCNN paper is that when computing the query-snippet similarity scores, average pooling is actually applied to the output of each one of the convolution/pooling blocks, i.e., we obtain a different query and snippet feature vector from the output of each block. Different similarity scores are computed based on the query and snippet feature vectors obtained from the output of each block, and all the similarity scores are passed to the final layer. Thus the number of inputs to the final layer is proportional to the number of blocks.

7 This was not actually the case in BioASQ year 1. Hence, some of our training data do not adhere to this rule.

8 The same filters are applied to both queries and snippets.
3.2 Post-processing

A technique that seems to improve our results in snippet retrieval is to retain only the top \(K_s \) snippets with the best BCNN scores for each query, and then re-rank the \(K_s \) snippets by the relevance scores of the documents they came from; if two snippets came from the same document, they are subsequently ranked by their BCNN score. This is a proxy for more sophisticated models that would jointly consider document and snippet retrieval. This is important as the snippet retrieval model is trained under the condition that it only sees relevant documents. So accounting for the rank/score of the document itself helps to correctly bias the snippet model.

4 Overall System Architecture

Figure 6 outlines the general architecture that we used to piece together the various components. It consists of retrieving the top \(N \) documents per query using BM25 (Robertson et al., 1995); re-ranking the top \(N \) documents using one of the document retrieval models (Section 2) and retaining (up to) the top \(K_d \) documents; scoring all candidate snippets of the top \(K_d \) documents via a snippet retrieval model (BCNN, Section 3.1) and retaining (up to) the top \(K_s \) snippets; re-ranking the \(K_s \) snippets by the relevance scores of the documents they came from (Section 3.2).

We set \(K_d = K_s = 10 \) as it was dictated by the BioASQ challenge. We set \(N = 100 \) as we found that with this value, BM25 returned the majority of the relevant documents from the training/development data sets. Setting \(N \) to larger values had no impact on the final results. The reason for using a pre-retrieval model based on BM25 is that the deep document retrieval models we use here are computationally expensive. Thus, running them on every document in the index for every query is prohibitive, whereas running them on the top \(N = 100 \) documents from a pre-retrieval system is easily achieved.

5 Experiments

All retrieval components (PACRR-, DRMM-, BCNN-based) were augmented to combine the scores of the corresponding deep model with a number of traditional IR features, which is a common technique (Severyn and Moschitti, 2015). In TERM-PACRR, the additional features are fed to the linear layer that combines the q-term scores (Fig. 1). In ABELOW-DRMM, an additional linear layer is used that concatenates the deep learning document relevance score with the traditional IR features. In BCNN, the additional features are included in the final linear layer (Fig. 5). The additional features we used were the BM25 score of the document (the document the snippet came from, in snippet retrieval), word overlap (binary and IDF weighted) between the query and the document or snippet; bigram overlap between the query and the document or snippet. The latter features were taken from Mohan et al. (2017). The additional features improved the performance of all models.

5.1 Data Resources and Pre-processing

The document collection consists of approx. 28M ‘articles’ (titles and abstracts only) from the ‘MEDLINE/PubMed Baseline 2018’ collection.\(^9\) We discarded the approx. 10M articles that contained only titles, since very few of these were annotated as relevant. For the remaining 18M articles, a document was a concatenation of each title and abstract. These documents were then indexed using Galago, removing stop words and applying Krovetz’s stemmer (Krovetz, 1993).\(^11\) This served as our pre-retrieval model.

Word embeddings were pre-trained by applying word2vec (Mikolov et al., 2013) to the 28M ‘articles’ of the MEDLINE/PubMed collection. IDF values were computed over the 18M articles that contained both titles and abstracts. We used the GenSim implementation of word2vec (skip-gram model), with negative sampling, window size set to 5, default other hyper-parameter values, to produce word embeddings of 200 dimensions.\(^12\) The word embeddings were not updated when training the document relevance ranking models. For tokenization, we used the ‘bioclean’ tool provided by BioASQ.\(^13\) In snippet retrieval, we used NLTK’s

\(^12\)Consult https://radimrehurek.com/gensim/models/word2vec.html. We used Gensim v. 3.3.0.

\(^13\)The tool accompanies an older set of embeddings provided by BioASQ. See http://participants-area.bioasq.org/tools/BioASQword2vec/.
English sentence splitter.\footnote{We used NLTK v3.2.3. See \url{https://www.nltk.org/api/nltk.tokenize.html}.}

To train and tune the models we used years 1–5 of the BioASQ data, using batch 5 of year 5 as development for the final submitted models, specifically when selecting optimal model epoch. We report test results (F1, MAP, GMAP) on batches 1–5 of year 6 from the official results table.\footnote{Available at \url{http://participants-area.bioasq.org/results/6b/phaseA/}. The names of our systems have been modified for the blind review.} Details on the three evaluation metrics are provided by Tsatsaronis et al. (2015). They are standard, with the exception that MAP here always assumes 10 relevant documents/snippets, which is the maximum number of documents/snippets the participating systems were allowed to return per query.

5.2 Hyperparameters

All DRMM-based models were trained with Adam (Kingma and Ba, 2014) with a learning rate of 0.01 and $\beta_1/\beta_2 = 0.9/0.999$. Batch sizes were set to 32. We used a hinge-loss with a margin of 1.0 over pairs of a single positive and a single negative document of the same query. All models used a two-layer MLP to score q-terms (dense layers of Fig. 2), with leaky-RELU activation functions and 8 dimensions per hidden layer. For context-sensitive term encodings (Fig. 3), a single layer was used, again with leaky-RELU as activation. For the density-based extension of ABEL-DRMM (Section 2.2.2), $l_w = 20$. For the confidence extension of ABEL-DRMM, $l_d = 100$, $l_c = 0.01$.

TERM-PACRR was also trained with Adam, with a learning rate of 0.001 and $\beta_1/\beta_2 = 0.9/0.999$ with batch size equal to 32. Following Hui et al. (2018), we used binary log-loss over pairs of a single positive and a single negative document of the same query. Maximum query length l_q was set to 30 and maximum document length l_d was set to 300. Maximum kernel size $(l_q \times l_d)$ was set to (3×3) with 16 filters per size. Row-wise k-max pooling used $k = 2$. TERM-PACRR used a two-layer MLP with RELU activations and hidden layers with 7 dimensions to independently score each document-aware query-term encoding.

BCNN was trained using binary log-loss and AdaGrad (Duchi et al., 2011), with a learning rate of 0.08 and L2 regularization with $\lambda = 0.0004$. We used 50 convolution kernels (filters) of width $w = 4$ in each convolution layer, and two convolution/pooling blocks. Finally, batch sizes were set to 200. Snippets were truncated to 40 tokens. Questions were never truncated.

5.3 Official Submissions

We submitted 5 different systems to the BioASQ challenge, all of which consist of components described above.

- **AUEB-NLP-1**: Combo of 10 runs of TERM-PACRR for document retrieval (§2.1) followed by BCNN for snippet retrieval (§3).
- **AUEB-NLP-2**: Combo of 10 runs of ABEL-DRMM (§2.2) for document retrieval followed by BCNN for snippet retrieval.
- **AUEB-NLP-3**: Combo of 10 runs of TERM-PACRR and 10 runs of ABEL-DRMM followed by BCNN for snippet retrieval.
- **AUEB-NLP-4**: ABEL-DRMM with density extension (§2.2.2) for document retrieval followed by BCNN for snippet retrieval.
- **AUEB-NLP-5**: ABEL-DRMM with both density and confidence extensions (§2.2.2) for document retrieval followed by BCNN for...
snippet retrieval. This system was submitted for batches 2-5 only.

In combination (combo) systems, we obtained 10 versions of the corresponding model by retraining it 10 times with different random seeds, and we then used a simple voting scheme. If a document was ranked at position 1 by a model it got 10 votes, position 2 was 9 votes, until position 10 where it got 1 vote. Votes were then aggregated over all models in the combination. While voting did not improve upon the best single model, it made the results more stable across different runs.

5.4 Results

Results are given in Table 1. There are a number of things to note. First, for document retrieval, there is very little difference between our submitted models. Both PACRR- and DRMM-based models perform well (usually at the top or near the top) with less than 1 MAP point separating them. These systems were all competitive and for 4 of the 5 batches one was the top scoring system in the competition. On average the experimental ABEL-DRMM system (AUEB-NLP-4) scored best amongst AUEB submissions and in aggregate over all submissions, but by a small margin (0.1053 average MAP versus 0.1016 for TERM-PACRR). The exception was the high precision system (AUEB-NLP-5) which did worse in all metrics except F1, where it was easily the best system for the 4 batches it participated in. This is not particularly surprising, but impacted snippet selection, as we will see.

For snippet selection, all systems did well (AUEB-NLP-[1-4]) and it is hard to form a pattern that a base document retrieval model’s results are more conducive to snippet selection. The exception is the high-precision document retrieval model of AUEB-NLP-5, which had by far the best scores for AUEB submissions and the challenge as a whole. The main reason for this is that the snippet retrieval component was trained assuming only relevant documents as input. Thus, if we fed it all 10 documents, even when some were not relevant, it could theoretically still rank a snippet from an irrelevant document high since it is not trained to combat this. By sending the snippet retrieval model only high precision document sets it focused on finding good snippets at the expense of potentially missing some relevant documents.

6 Related Work

Document ranking has been studied since the dawn of IR; classic term-weighting schemes were designed for this problem (Sparck Jones, 1972; Robertson and Sparck Jones, 1976). With the advent of statistical NLP and statistical IR, probabilistic language and topic modeling were explored (Zhai and Lafferty, 2001; Wei and Croft, 2006), followed recently by deep learning IR methods (Lu and Li, 2013; Hu et al., 2014; Palangi et al., 2016; Guo et al., 2016; Hui et al., 2017).

Most document relevance ranking methods fall within two categories: representation-based, e.g., Palangi et al. (2016), or interaction-based, e.g., Lu and Li (2013). In the former, representations of the query and document are generated independently. Interaction between the two only happens at the final stage, where a score is generated indicating relevance. End-to-end learning and backpropagation through the network tie the two representations together. In the interaction-based paradigm – which is where the models studied here fall – explicit encodings between pairs of queries and documents are induced. This allows direct modeling of exact or near-matching terms (e.g., synonyms), which is crucial for relevance ranking. Indeed, Guo et al. (2016) showed that the interaction-based DRMM outperforms previous representation-based methods. On the other hand, interaction-based models are less efficient, since one cannot index a document representation independently of the query. This is less important, though, when relevance ranking methods rerank the top documents returned by a conventional IR engine, which is the scenario we consider here.

In terms of biomedical document and snippet retrieval, several methods have been proposed for BioASQ (Tsatsaronis et al., 2015), mostly based on traditional IR and ML techniques. For example, the system of Jin et al. (2017), which is the top scoring one for previous incarnations of BioASQ (UTSB team), uses an underlying graphical model for scoring coupled with a number of traditional IR techniques like pseudo-relevance feedback.

The most related work from the biomedical domain is that of Mohan et al. (2017), who use a deep learning architecture for document ranking. Like our systems they use interaction-based models to score and aggregate q-term matches relative to a document, however using different document-aware q-term representations – namely best match
we expect to see big-gain from deep learning models. This is in contrast to previous years where traditional IR systems tended to dominate. In future years, as deep ranking models improve and training data sets get larger, we expect to see bigger gains from deep learning models.

7 Conclusions

We presented the models, experimental set-up, and results of AUEB’s submissions to the document and snippet retrieval tasks of the sixth year of the BioASQ challenge. Our results show that deep learning models are not only competitive in both tasks, but in aggregate were the top scoring systems. This is in contrast to previous years where traditional IR systems tended to dominate. In future years, as deep ranking models improve and training data sets get larger, we expect to see bigger gains from deep learning models.
References

