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Sannikov’s continuous-time contracting problem
Our work

Stochastic basis

• Probability space (Ω,F ,P), carrying a one-dimensional Brownian motion W ;

• F: P-completed natural filtration of W ;

• A: F-predictable, A-valued (compact ⊂ R+, 0 ∈ A) processes;

• Pα: equivalent to P, s.t. Wα
· := W· −

∫ ·
0 αsds is Pα–Brownian motion.
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Dylan Possamäı Golden Parachute in continuous time contracting



3/19

Sannikov’s continuous-time contracting problem
Our work

Contracts

Agent is in charge of the output process

dXt = αtdt + σdWα
t , α ∈ A.

Second best contracting: Principal chooses a contract C := (τ, π, ξ) ∈ C, where

(i) τ : stopping time, retirement of Agent;

(ii) π: F-predictable process, non-negative continuous payment;

(iii) ξ: Fτ -measurable r.v., non-negative payment at retirement.
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Sannikov’s continuous-time contracting problem
Our work

Model parameters

• r and ρ discount rates of Agent and Principal; denote δ := r
ρ
. Typically: δ ≥ 1,

Agent is more impatient than Principal.

• γ > 1: parameter related to the agent’s utility function

c0(−1 + π
1
γ
)
≤ u(π) ≤ c1

(
1 + π

1
γ
)
, π ≥ 0, for some c0, c1 > 0.

• u : [0,∞) −→ [0,∞), with u(0) = 0, limπ→∞ u′(π) = 0.

• Cost function of Agent given by map h, increasing, strictly convex, h(0) = 0.

• Principal is risk-neutral.
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Dylan Possamäı Golden Parachute in continuous time contracting



5/19

Sannikov’s continuous-time contracting problem
Our work

The contracting problem

Utility criteria of Agent and Principal

JA(C, α) := EPα
[
e−rτu(ξ) +

∫ τ

0
re−rs

(
u(πs)− h(αs)

)
ds

]
,

JP(C, α) := EPα
[
− e−ρτ ξ +

∫ τ

0
ρe−ρs(−πs + αs)ds

]
.

Agent’s utility maximisation problem

VA(C) := sup
α∈A

JA(C, α), and Â(C) :=
{
α̂ ∈ A : VA(C) = JA(C, α̂)

}

Principal’s problem

VP := sup
C∈CR

sup
α̂∈Â(C)

JP(C, α), where CR :=
{
C ∈ C : VA(C) ≥ R

}
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{
α̂ ∈ A : VA(C) = JA(C, α̂)

}

Principal’s problem

VP := sup
C∈CR

sup
α̂∈Â(C)
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Sannikov’s continuous-time contracting problem
Our work

Golden Parachutes

Sannikov defines contract differently

(i) no explicit retirement time τ ;

(ii) no explicit lump-sum payement ξ;

(iii) termination of contract at some to corresponds to lifetime payment of πto on
[to ,+∞) =⇒ Agent stops making any efforts on [to ,+∞).

When πto > 0, this is exactly what Sannikov calls a Golden Parachute. However∫ +∞

to

re−rsu(πto )ds = e−rto u(πto ).

This means that for Agent, lifetime payment is equivalent to lump-sum payment at to .

Question

How can one formulate mathematically that the model exhibits a Golden Parachute?
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Dylan Possamäı Golden Parachute in continuous time contracting



6/19

Sannikov’s continuous-time contracting problem
Our work

Golden Parachutes

Sannikov defines contract differently

(i) no explicit retirement time τ ;

(ii) no explicit lump-sum payement ξ;

(iii) termination of contract at some to corresponds to lifetime payment of πto on
[to ,+∞) =⇒ Agent stops making any efforts on [to ,+∞).

When πto > 0, this is exactly what Sannikov calls a Golden Parachute. However∫ +∞

to

re−rsu(πto )ds = e−rto u(πto ).

This means that for Agent, lifetime payment is equivalent to lump-sum payment at to .

Question

How can one formulate mathematically that the model exhibits a Golden Parachute?
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Sannikov’s continuous-time contracting problem
Our work

Dynamics of Agent’s continuation utility

• By standard martingale optimality principle, value function of Agent satisfies

dYt = rZtdXt + r
(
Yt + u(πt) + H(Zt)

)
dt, where H(z) := sup

a∈A

{
az − h(a)

}
,

with optimal effort process satisfying ât ∈ Â(Zt) := argmax H(Zt).

• Trick: Y is unique state variable for Principal.

• W.l.o.g. can concentrate on contracts of the form u−1
(
Y y,Z ,π
T

)
, with

Y y,Z ,π
t := y + r

∫ t

0

(
Y y,Z .π
s + u(πs) + H(Zs)

)
ds +

∫ t

0
rZsdXs , t ∈ [0,T ].

• Starting point of Cvitanić, P. and Touzi (2018), extended to random horizon by Lin,
Ren, Touzi and Yang (2020).
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Sannikov’s continuous-time contracting problem
Our work

Reduction to a mixed control–stopping problem

By the reduction result of Lin, Ren, Touzi and Yang (2020), we have

VP = sup
y≥R

V (y),

where
V (y) := sup

τ,Z ,π
sup

â∈Â(Z)

J(τ , π,Z , â),

J(τ, π,Z , â) := EPâ
[
− e−ρτu−1

(
Y y,Z ,π
τ

)
+

∫ τ

0
ρe−ρt

(
ât − πt

)
dt

]
,

with controlled state

Y y,Z ,π
t = y +

∫ t

0
r
(
Y y,Z ,π
s + h

(
âs
)
+ u(πs)

)
ds +

∫ t

0
rZsσdW

â
s , t ∈ [0,T ].
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Sannikov’s continuous-time contracting problem
Our work

Reduction to a mixed control–stopping problem

The dynamic programming equation is

(DPE) v(0) = 0, and min
{
v − F , Lv

}
= 0, on (0,∞),

where η := 1
2
rσ2, F := −u−1, and

Lv := v − δyv ′ + F⋆(δv ′)− I0
+
(
δv ′, δv ′′),

F⋆(p) := inf
y≥0

{
py − F (y)

}
,

I0(p, q) := sup
z≥h′(0), â∈Â(z)

{
â+ h(â)p + ηz2q

}
.
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Sannikov’s continuous-time contracting problem
Our work

Back to Golden Parachutes

• According to Sannikov (for δ = 1) previous variational ODE has a unique solution of
the form

v(0) = 0, Lv = 0, on [0, ygp], and v = F , on [ygp,+∞),

where ygp is a free boundary such that

v(ygp) = F (ygp), and v ′(ygp) = F ′(ygp) (smoothfit).

• Stopping region is {0} ∪ [ygp,∞).

• With earlier reasoning, Golden Parachute should correspond to

Definition

The model exhibits a Golden Parachute if Principal’s value function satisfies v = F on
[ygp,+∞) for some ygp > 0.

• According to Sannikov, Golden Parachute always exists.
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• With earlier reasoning, Golden Parachute should correspond to

Definition

The model exhibits a Golden Parachute if Principal’s value function satisfies v = F on
[ygp,+∞) for some ygp > 0.

• According to Sannikov, Golden Parachute always exists.
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Face-lifted utility
Some cases of NGP
Numerical results
To conclude

Objectives of our work

• Rigorous formulation (and proofs)

• Golden Parachute does not always exist!

• Something happens when Agent and Principal have different discount factors

(i) previous definition of Golden Parachute no longer relevant;

(ii) requires to introduce a face-lifted agent’s utility function;

(iii) contrasting some conjectures/claims by Sannikov.
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Face-lifted utility
• When Principal stops contract at τ , Agent is indifferent between immediate lump-sum
payment, and stopping working and receiving a lifetime rent.

• However, is Principal indifferent?

• Let yy0,π(0) = y0, ẏy0,π(t) = r
(
yy0,p(t) + u(π(t))

)
, t > 0. Then

y0 = e−rT yy0,π(T )−
∫ T

0
e−rtu

(
π(t)

)
dt, T ≤ T y0,p

0 := inf
{
t ≥ 0 : yy0,p(t) ≤ 0

}
.

• Agent is indifferent between

(i) lump-sum payment ξ at τ ,

(ii) continuous payment π(t) and zero effort on [τ, τ + T ], retirement at τ + T , with lump-sum

payment ξ′ := −F
(
yu(ξ),π(T )

)
.

Face-lifted (inverse) utility

F (y0) := sup
π≥0

sup
T∈[0,T

y0,π
0 ]

{
e−ρTF

(
yy0,p(T )

)
−

∫ T

0
ρe−ρtπ(t)dt

}
.
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(
yy0,p(t) + u(π(t))

)
, t > 0. Then

y0 = e−rT yy0,π(T )−
∫ T

0
e−rtu

(
π(t)

)
dt, T ≤ T y0,p

0 := inf
{
t ≥ 0 : yy0,p(t) ≤ 0

}
.

• Agent is indifferent between

(i) lump-sum payment ξ at τ ,

(ii) continuous payment π(t) and zero effort on [τ, τ + T ], retirement at τ + T , with lump-sum

payment ξ′ := −F
(
yu(ξ),π(T )

)
.

Face-lifted (inverse) utility

F (y0) := sup
π≥0

sup
T∈[0,T

y0,π
0 ]

{
e−ρTF

(
yy0,p(T )

)
−

∫ T

0
ρe−ρtπ(t)dt

}
.
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Some comments

• When δ = 1, Sannikov is right: no need to defer retirement, and F is the appropriate
function for optimal stopping.

• When δ ̸= 1, F > F , and deferring retirement until continuation utility reaches 0 is
optimal!

• Two regimes however

(i) If δγ > 1, replace F by F in Principal’s criterion (relaxed formulation).

(ii) If δγ ≤ 1, problem degenerates! Possible to find a sequence of contracts, for
which

Agent makes maximal effort;
Agent receives infinite utility;
Principal reaches the upper bound of his utility.
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Golden Parachute revisited

Definition

We say that the contracting model exhibits a Golden Parachute, if there exists an
optimal contract (τ⋆, π⋆, ξ⋆) ∈ CR for the relaxed formulation of Principal’s problem
such that τ⋆ > 0, and P[ξ⋆ > 0] > 0.

In words, a Golden Parachute means that Agent

ceases any effort at some positive stopping time;

and retires with non-zero payment (lump-sum or lifetime payment rate)

From the PDE point of view

Definition

The model exhibits a Golden Parachute if Principal’s relaxed value function satisfies
v = F on [ygp,+∞) for some ygp > 0.
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Some cases of NGP

Proposition

Let β := h′(0). Then there is No Golden Parachute whenever either

(NGP1) β = 0;

(NGP2) or β > 0, F
′′
is non-increasing, and “β large enough”;

(NGP3) or β > 0, A is an interval, h′ is convex, and “β large enough”.
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Dylan Possamäı Golden Parachute in continuous time contracting



16/19

Sannikov’s continuous-time contracting problem
Our work

Face-lifted utility
Some cases of NGP
Numerical results
To conclude

Numerical result 1

Same parameters as in Sannikov ’08: γ = 2, η = 0.05, h = 0.5, β = 0.4, and δ = 1

Figure: v (red), F (blue): Golden Parachute exists
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Numerical result 2

γ = 3/2, η = h = 1, β = 0.01, and δ = 3/4

Figure: v (red), F (green), F (blue), Golden Parachute exists
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Conclusions

• Proof of well-posedness of DPE is surprisingly hard (at least for us!).

• Construct ‘sharp’ super-solutions, use Perron’s method, and comparison theorem.

• Sannikov’s proof has gaps, as he assumes that ygp is always finite, which we cannot
prove.

• When δ > 1, solution must always be decreasing (meaning no informational rent),
which is very different from Sannikov’s message.

• Preliminary results for more general utility functions (negative powers or logarithm)
seem to show that solution is very sensitive to data.
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Thank you for your attention!
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