Is there a Golden Parachute in Sannikov's principal-agent problem?

Dylan Possamaï

ETH Zürich, Switzerland

Joint work with Nizar Touzi

CRETE 2021, Naxos, Greece, July 14, 2021

프 > - - - - >

• Probability space $(\Omega, \mathcal{F}, \mathbb{P})$, carrying a one-dimensional Brownian motion W;

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ◆ ○ ◆

- Probability space $(\Omega, \mathcal{F}, \mathbb{P})$, carrying a one-dimensional Brownian motion W;
- \mathbb{F} : \mathbb{P} -completed natural filtration of W;

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ◆ ○ ◆

- Probability space $(\Omega, \mathcal{F}, \mathbb{P})$, carrying a one-dimensional Brownian motion W;
- \mathbb{F} : \mathbb{P} -completed natural filtration of W;
- \mathcal{A} : \mathbb{F} -predictable, \mathcal{A} -valued (compact $\subset \mathbb{R}_+, 0 \in \mathcal{A}$) processes;

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - 釣�()~.

- Probability space $(\Omega, \mathcal{F}, \mathbb{P})$, carrying a one-dimensional Brownian motion W;
- \mathbb{F} : \mathbb{P} -completed natural filtration of W;
- \mathcal{A} : \mathbb{F} -predictable, \mathcal{A} -valued (compact $\subset \mathbb{R}_+, 0 \in \mathcal{A}$) processes;
- \mathbb{P}^{α} : equivalent to \mathbb{P} , s.t. $W^{\alpha}_{\cdot} := W_{\cdot} \int_{0}^{\cdot} \alpha_{s} ds$ is \mathbb{P}^{α} -Brownian motion.

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへで、

Contracts

Agent is in charge of the output process

 $\mathrm{d}X_t = \frac{\alpha_t}{\alpha_t}\mathrm{d}t + \sigma\mathrm{d}W_t^{\alpha}, \ \alpha \in \mathcal{A}.$

・ロン ・四 と ・ ヨ と ・ ヨ と

Contracts

Agent is in charge of the output process

 $\mathrm{d}X_t = \frac{\alpha_t}{\alpha_t}\mathrm{d}t + \sigma\mathrm{d}W_t^{\alpha}, \ \alpha \in \mathcal{A}.$

Second best contracting: Principal chooses a contract $C := (\tau, \pi, \xi) \in \mathfrak{C}$, where

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Contracts

Agent is in charge of the output process

 $\mathrm{d}X_t = \frac{\alpha_t}{\alpha_t}\mathrm{d}t + \sigma\mathrm{d}W_t^{\alpha}, \ \alpha \in \mathcal{A}.$

Second best contracting: Principal chooses a contract $C := (\tau, \pi, \xi) \in \mathfrak{C}$, where

(i) τ : stopping time, retirement of Agent;

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ● ○ ○ ○ ○

Contracts

Agent is in charge of the output process

 $\mathrm{d}X_t = \frac{\alpha_t}{\alpha_t}\mathrm{d}t + \sigma\mathrm{d}W_t^{\alpha}, \ \alpha \in \mathcal{A}.$

Second best contracting: Principal chooses a contract $C := (\tau, \pi, \xi) \in \mathfrak{C}$, where

- (i) τ : stopping time, retirement of Agent;
- (*ii*) π : F-predictable process, non-negative continuous payment;

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

Contracts

Agent is in charge of the output process

 $\mathrm{d}X_t = \frac{\alpha_t}{\alpha_t}\mathrm{d}t + \sigma\mathrm{d}W_t^{\alpha}, \ \alpha \in \mathcal{A}.$

Second best contracting: Principal chooses a contract $C := (\tau, \pi, \xi) \in \mathfrak{C}$, where

- (i) τ : stopping time, retirement of Agent;
- (*ii*) π : F-predictable process, non-negative continuous payment;
- (iii) ξ : \mathcal{F}_{τ} -measurable r.v., non-negative payment at retirement.

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● の < ⊙

• r and ρ discount rates of Agent and Principal; denote $\delta := \frac{r}{\rho}$. Typically: $\delta \ge 1$, Agent is more impatient than Principal.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

- *r* and ρ discount rates of Agent and Principal; denote $\delta := \frac{r}{\rho}$. Typically: $\delta \ge 1$, Agent is more impatient than Principal.
- $\bullet ~\gamma > 1:$ parameter related to the agent's utility function

 $c_0(-1+\pi^{rac{1}{\gamma}}) \leq u(\pi) \leq c_1(1+\pi^{rac{1}{\gamma}}), \ \pi \geq 0, \ ext{for some } c_0, c_1 > 0.$

<ロ> < □> < □> < 三> < 三> < 三> < 三 > ○ Q (4/19

- *r* and ρ discount rates of Agent and Principal; denote $\delta := \frac{r}{\rho}$. Typically: $\delta \ge 1$, Agent is more impatient than Principal.
- $\gamma > 1$: parameter related to the agent's utility function

 $c_0 \big(-1 + \pi^{\frac{1}{\gamma}} \big) \leq \textit{u}(\pi) \leq c_1 \big(1 + \pi^{\frac{1}{\gamma}} \big), \ \pi \geq 0, \ \text{for some} \ c_0, c_1 > 0.$

• $u: [0,\infty) \longrightarrow [0,\infty)$, with u(0) = 0, $\lim_{\pi \to \infty} u'(\pi) = 0$.

<ロ> < □> < □> < 三> < 三> < 三> < 三 > ○ Q (4/19

- *r* and ρ discount rates of Agent and Principal; denote $\delta := \frac{r}{\rho}$. Typically: $\delta \ge 1$, Agent is more impatient than Principal.
- $\gamma > 1$: parameter related to the agent's utility function $c_0(-1 + \pi^{\frac{1}{\gamma}}) \leq u(\pi) \leq c_1(1 + \pi^{\frac{1}{\gamma}}), \ \pi \geq 0, \ \text{for some} \ c_0, c_1 > 0.$
- $u: [0,\infty) \longrightarrow [0,\infty)$, with u(0) = 0, $\lim_{\pi \to \infty} u'(\pi) = 0$.
- Cost function of Agent given by map h, increasing, strictly convex, h(0) = 0.

<ロ> < □> < □> < □> < 三> < 三> < 三> ○ Q (4/19

- *r* and ρ discount rates of Agent and Principal; denote $\delta := \frac{r}{\rho}$. Typically: $\delta \ge 1$, Agent is more impatient than Principal.
- $\gamma > 1$: parameter related to the agent's utility function $c_0(-1 + \pi^{\frac{1}{\gamma}}) \leq u(\pi) \leq c_1(1 + \pi^{\frac{1}{\gamma}}), \ \pi \geq 0, \ \text{for some } c_0, c_1 > 0.$
- $u: [0,\infty) \longrightarrow [0,\infty)$, with u(0) = 0, $\lim_{\pi \to \infty} u'(\pi) = 0$.
- Cost function of Agent given by map h, increasing, strictly convex, h(0) = 0.
- Principal is risk-neutral.

<ロ> < □> < □> < □> < 三> < 三> < 三> ○ Q (4/19

The contracting problem

Utility criteria of Agent and Principal

$$J^{\mathcal{A}}(\mathbf{C},\alpha) := \mathbb{E}^{\mathbb{P}^{\alpha}} \bigg[\mathrm{e}^{-r\tau} u(\xi) + \int_{0}^{\tau} r \mathrm{e}^{-rs} \big(u(\pi_{s}) - h(\alpha_{s}) \big) \mathrm{d}s \bigg],$$

ъ.

5/19

The contracting problem

Utility criteria of Agent and Principal

$$J^{\mathrm{A}}(\mathbf{C},\alpha) := \mathbb{E}^{\mathbb{P}^{\alpha}} \left[\mathrm{e}^{-r\tau} u(\xi) + \int_{0}^{\tau} r \mathrm{e}^{-rs} \left(u(\pi_{s}) - h(\alpha_{s}) \right) \mathrm{d}s \right],$$
$$J^{\mathrm{P}}(\mathbf{C},\alpha) := \mathbb{E}^{\mathbb{P}^{\alpha}} \left[-\mathrm{e}^{-\rho\tau} \xi + \int_{0}^{\tau} \rho \mathrm{e}^{-\rho s} (-\pi_{s} + \alpha_{s}) \mathrm{d}s \right].$$

ъ.

5/19

The contracting problem

Utility criteria of Agent and Principal

$$J^{\mathrm{A}}(\mathbf{C},\alpha) := \mathbb{E}^{\mathbb{P}^{\alpha}} \bigg[\mathrm{e}^{-r\tau} u(\xi) + \int_{0}^{\tau} r \mathrm{e}^{-rs} \big(u(\pi_{s}) - h(\alpha_{s}) \big) \mathrm{d}s \bigg],$$
$$J^{\mathrm{P}}(\mathbf{C},\alpha) := \mathbb{E}^{\mathbb{P}^{\alpha}} \bigg[-\mathrm{e}^{-\rho\tau} \xi + \int_{0}^{\tau} \rho \mathrm{e}^{-\rho s} (-\pi_{s} + \alpha_{s}) \mathrm{d}s \bigg].$$

Agent's utility maximisation problem

$$V^{\mathrm{A}}(\mathsf{C}) := \sup_{\alpha \in \mathcal{A}} J^{\mathrm{A}}(\mathsf{C}, \alpha), \text{ and } \widehat{\mathcal{A}}(\mathsf{C}) := \big\{ \widehat{\alpha} \in \mathcal{A} : V^{\mathrm{A}}(\mathsf{C}) = J^{\mathrm{A}}(\mathsf{C}, \widehat{\alpha}) \big\}$$

2

5/19

프 > - - - - >

The contracting problem

Utility criteria of Agent and Principal

$$J^{\mathrm{A}}(\mathbf{C},\alpha) := \mathbb{E}^{\mathbb{P}^{\alpha}} \left[\mathrm{e}^{-r\tau} u(\xi) + \int_{0}^{\tau} r \mathrm{e}^{-rs} (u(\pi_{s}) - h(\alpha_{s})) \mathrm{d}s \right],$$
$$J^{\mathrm{P}}(\mathbf{C},\alpha) := \mathbb{E}^{\mathbb{P}^{\alpha}} \left[-\mathrm{e}^{-\rho\tau} \xi + \int_{0}^{\tau} \rho \mathrm{e}^{-\rho s} (-\pi_{s} + \alpha_{s}) \mathrm{d}s \right].$$

Agent's utility maximisation problem

$$V^{\mathrm{A}}(\mathsf{C}) := \sup_{lpha \in \mathcal{A}} J^{\mathrm{A}}(\mathsf{C}, lpha), \text{ and } \widehat{\mathcal{A}}(\mathsf{C}) := \left\{ \widehat{lpha} \in \mathcal{A} : V^{\mathrm{A}}(\mathsf{C}) = J^{\mathrm{A}}(\mathsf{C}, \widehat{lpha})
ight\}$$

Principal's problem

$$\boldsymbol{V}^{\mathrm{P}} := \sup_{\boldsymbol{\mathsf{C}} \in \mathfrak{C}_{R}} \sup_{\boldsymbol{\alpha} \in \widehat{\mathcal{A}}(\boldsymbol{\mathsf{C}})} \boldsymbol{J}^{\mathrm{P}}(\boldsymbol{\mathsf{C}}, \boldsymbol{\alpha}), \text{ where } \mathfrak{C}_{R} := \big\{ \boldsymbol{\mathsf{C}} \in \mathfrak{C} : \boldsymbol{V}^{\mathrm{A}}(\boldsymbol{\mathsf{C}}) \geq R \big\}$$

2

5/19

(E)

Sannikov defines contract differently

(*i*) no explicit retirement time τ ;

・ロン ・回 と ・ ヨ と ・ ヨ と …

2

Sannikov defines contract differently

- (*i*) no explicit retirement time τ ;
- (*ii*) no explicit lump-sum payement ξ ;

2

6/19

Sannikov defines contract differently

- (*i*) no explicit retirement time τ ;
- (*ii*) no explicit lump-sum payement ξ ;
- (iii) termination of contract at some t_o corresponds to lifetime payment of π_{t_o} on $[t_o, +\infty) \Longrightarrow$ Agent stops making any efforts on $[t_o, +\infty)$.

2

Sannikov defines contract differently

- (*i*) no explicit retirement time τ ;
- (*ii*) no explicit lump-sum payement ξ ;
- (iii) termination of contract at some t_o corresponds to lifetime payment of π_{t_o} on $[t_o, +\infty) \Longrightarrow$ Agent stops making any efforts on $[t_o, +\infty)$.

When $\pi_{t_o} > 0$, this is exactly what Sannikov calls a Golden Parachute. However

2

Sannikov defines contract differently

- (*i*) no explicit retirement time τ ;
- (*ii*) no explicit lump-sum payement ξ ;
- (iii) termination of contract at some t_o corresponds to lifetime payment of π_{t_o} on $[t_o, +\infty) \Longrightarrow$ Agent stops making any efforts on $[t_o, +\infty)$.

When $\pi_{t_o} > 0$, this is exactly what Sannikov calls a Golden Parachute. However

$$\int_{t_o}^{+\infty} r \mathrm{e}^{-rs} u(\pi_{t_o}) \mathrm{d}s = \mathrm{e}^{-rt_o} u(\pi_{t_o}).$$

2

Sannikov defines contract differently

- (*i*) no explicit retirement time τ ;
- (*ii*) no explicit lump-sum payement ξ ;
- (iii) termination of contract at some t_o corresponds to lifetime payment of π_{t_o} on $[t_o, +\infty) \Longrightarrow$ Agent stops making any efforts on $[t_o, +\infty)$.

When $\pi_{t_o} > 0$, this is exactly what Sannikov calls a Golden Parachute. However

$$\int_{t_o}^{+\infty} r \mathrm{e}^{-rs} u(\pi_{t_o}) \mathrm{d}s = \mathrm{e}^{-rt_o} u(\pi_{t_o}).$$

This means that for Agent, lifetime payment is equivalent to lump-sum payment at to.

Sannikov defines contract differently

- (*i*) no explicit retirement time τ ;
- (*ii*) no explicit lump-sum payement ξ ;
- (iii) termination of contract at some t_o corresponds to lifetime payment of π_{t_o} on $[t_o, +\infty) \Longrightarrow$ Agent stops making any efforts on $[t_o, +\infty)$.

When $\pi_{t_o} > 0$, this is exactly what Sannikov calls a Golden Parachute. However

$$\int_{t_o}^{+\infty} r \mathrm{e}^{-rs} u(\pi_{t_o}) \mathrm{d}s = \mathrm{e}^{-rt_o} u(\pi_{t_o}).$$

This means that for Agent, lifetime payment is equivalent to lump-sum payment at t_o .

Question

How can one formulate mathematically that the model exhibits a Golden Parachute?

• By standard martingale optimality principle, value function of Agent satisfies $dY_t = rZ_t dX_t + r(Y_t + u(\pi_t) + H(Z_t))dt, \text{ where } H(z) := \sup \{az - h(a)\},$

with optimal effort process satisfying $\hat{a}_t \in \hat{A}(Z_t) := \operatorname{argmax} H(Z_t)$.

▲□ > ▲□ > ▲ □ > ▲ □ > ▲ □ > _ □ □ →

• By standard martingale optimality principle, value function of Agent satisfies $dY_t = rZ_t dX_t + r(Y_t + u(\pi_t) + H(Z_t))dt, \text{ where } H(z) := \sup_{z \in A} \{az - h(a)\},$

with optimal effort process satisfying $\hat{a}_t \in \hat{A}(Z_t) := \operatorname{argmax} H(Z_t)$.

• Trick: Y is unique state variable for Principal.

イロト イヨト イヨト イヨト 二日 二

• By standard martingale optimality principle, value function of Agent satisfies $dY_t = rZ_t dX_t + r(Y_t + u(\pi_t) + H(Z_t))dt, \text{ where } H(z) := \sup_{a} \{az - h(a)\},$

with optimal effort process satisfying $\hat{a}_t \in \hat{A}(Z_t) := \operatorname{argmax} H(Z_t)$.

- Trick: Y is unique state variable for Principal.
- W.I.o.g. can concentrate on contracts of the form $u^{-1}(Y_T^{y,Z,\pi})$, with

$$Y_t^{y,Z,\pi} := y + r \int_0^t \left(Y_s^{y,Z,\pi} + u(\pi_s) + H(Z_s) \right) \mathrm{d}s + \int_0^t r Z_s \mathrm{d}X_s, \ t \in [0,T].$$

<ロ> < □ > < □ > < Ξ > < Ξ > < Ξ > Ξ の < ♡ 7/19

• By standard martingale optimality principle, value function of Agent satisfies $dY_t = rZ_t dX_t + r(Y_t + u(\pi_t) + H(Z_t))dt, \text{ where } H(z) := \sup_{a} \{az - h(a)\},$

with optimal effort process satisfying $\hat{a}_t \in \hat{A}(Z_t) := \operatorname{argmax} H(Z_t)$.

- Trick: Y is unique state variable for Principal.
- W.I.o.g. can concentrate on contracts of the form $u^{-1}(Y_T^{y,Z,\pi})$, with

$$Y_t^{y,Z,\pi} := y + r \int_0^t \left(Y_s^{y,Z,\pi} + u(\pi_s) + H(Z_s) \right) \mathrm{d}s + \int_0^t r Z_s \mathrm{d}X_s, \ t \in [0,T].$$

• Starting point of Cvitanić, P. and Touzi (2018), extended to random horizon by Lin, Ren, Touzi and Yang (2020).

<ロ> < 回> < 回> < 三> < 三> < 三> 三 の Q (2 7/19)

Reduction to a mixed control-stopping problem

By the reduction result of Lin, Ren, Touzi and Yang (2020), we have

 $V^{\mathrm{P}} = \sup_{y \ge R} V(y),$

where

$$V(y) := \sup_{\tau, Z, \pi} \sup_{\hat{a} \in \hat{A}(Z)} J(\tau, \pi, Z, \hat{a}),$$

□ > ★ 注 > ★ 注 > 注 の < ()

Reduction to a mixed control-stopping problem

By the reduction result of Lin, Ren, Touzi and Yang (2020), we have

$$V^{\mathrm{P}} = \sup_{y \ge R} V(y),$$

where

$$V(y) := \sup_{\tau, Z, \pi} \sup_{\hat{a} \in \hat{A}(Z)} J(\tau, \pi, Z, \hat{a}),$$

$$J(\tau, \pi, Z, \hat{a}) := \mathbb{E}^{\mathbb{P}^{\hat{a}}} \left[-e^{-\rho\tau} u^{-1} (Y^{y, Z, \pi}_{\tau}) + \int_{0}^{\tau} \rho e^{-\rho t} (\hat{a}_{t} - \pi_{t}) \mathrm{d}t \right]$$

with controlled state

$$Y_t^{y,Z,\pi} = y + \int_0^t r(Y_s^{y,Z,\pi} + h(\hat{a}_s) + u(\pi_s)) \mathrm{d}s + \int_0^t rZ_s \sigma \mathrm{d}W_s^{\hat{a}}, \ t \in [0,T].$$

★ E ► ★ E ► E

Reduction to a mixed control-stopping problem

The dynamic programming equation is

(DPE)
$$v(0) = 0$$
, and min $\{v - F, Lv\} = 0$, on $(0, \infty)$,

where $\eta := \frac{1}{2}r\sigma^2$, $F := -u^{-1}$, and

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ の Q (2)

Reduction to a mixed control-stopping problem

The dynamic programming equation is

$$(\mathrm{DPE})$$
 $v(0) = 0$, and min $\{v - F, Lv\} = 0$, on $(0, \infty)$,

where
$$\eta := \frac{1}{2}r\sigma^2$$
, $F := -u^{-1}$, and
 $Lv := v - \delta yv' + F^*(\delta v') - l_0^+(\delta v', \delta v'')$,
 $F^*(p) := \inf_{y \ge 0} \{py - F(y)\}$,
 $l_0(p, q) := \sup_{z \ge h'(0), \ \hat{a} \in \hat{A}(z)} \{\hat{a} + h(\hat{a})p + \eta z^2 q\}$.

2

9/19

Back to Golden Parachutes

• According to Sannikov (for $\delta = 1$) previous variational ODE has a unique solution of the form

v(0) = 0, Lv = 0, on $[0, y_{gp}]$, and v = F, on $[y_{gp}, +\infty)$,

where y_{gp} is a free boundary such that

 $v(y_{gp}) = F(y_{gp})$, and $v'(y_{gp}) = F'(y_{gp})$ (smoothfit).

Back to Golden Parachutes

 \bullet According to Sannikov (for $\delta=1)$ previous variational ODE has a unique solution of the form

$$v(0) = 0$$
, $Lv = 0$, on $[0, y_{gp}]$, and $v = F$, on $[y_{gp}, +\infty)$,

where y_{gp} is a free boundary such that

$$v(y_{\rm gp}) = F(y_{\rm gp})$$
, and $v'(y_{\rm gp}) = F'(y_{\rm gp})$ (smoothfit).

• Stopping region is $\{0\} \cup [y_{gp}, \infty)$.

Back to Golden Parachutes

• According to Sannikov (for $\delta = 1$) previous variational ODE has a unique solution of the form

$$v(0) = 0$$
, $Lv = 0$, on $[0, y_{gp}]$, and $v = F$, on $[y_{gp}, +\infty)$,

where y_{gp} is a free boundary such that

$$v(y_{gp}) = F(y_{gp})$$
, and $v'(y_{gp}) = F'(y_{gp})$ (smoothfit).

- Stopping region is $\{0\} \cup [y_{gp}, \infty)$.
- With earlier reasoning, Golden Parachute should correspond to

Definition

The model exhibits a Golden Parachute if Principal's value function satisfies v = F on $[y_{gp}, +\infty)$ for some $y_{gp} > 0$.

- 4 同 6 4 回 6 4 回 6 - 回

Back to Golden Parachutes

• According to Sannikov (for $\delta = 1$) previous variational ODE has a unique solution of the form

$$v(0) = 0$$
, $Lv = 0$, on $[0, y_{gp}]$, and $v = F$, on $[y_{gp}, +\infty)$,

where y_{gp} is a free boundary such that

$$v(y_{gp}) = F(y_{gp})$$
, and $v'(y_{gp}) = F'(y_{gp})$ (smoothfit).

- Stopping region is $\{0\} \cup [y_{gp}, \infty)$.
- With earlier reasoning, Golden Parachute should correspond to

Definition

The model exhibits a Golden Parachute if Principal's value function satisfies v = F on $[y_{gp}, +\infty)$ for some $y_{gp} > 0$.

• According to Sannikov, Golden Parachute always exists.

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ ・ 三 ・ のへぐ

Face-lifted utility Some cases of NGP Numerical results To conclude

Objectives of our work

• Rigorous formulation (and proofs)

2

Objectives of our work

- Rigorous formulation (and proofs)
- Golden Parachute does not always exist!

Image: A mathematical states and a mathem

2

글 🖌 🔺 글 🕨

Objectives of our work

- Rigorous formulation (and proofs)
- Golden Parachute does not always exist!
- Something happens when Agent and Principal have different discount factors
 - (i) previous definition of Golden Parachute no longer relevant;

글 🖌 🔺 글 🕨

Objectives of our work

- Rigorous formulation (and proofs)
- Golden Parachute does not always exist!
- Something happens when Agent and Principal have different discount factors
 - (i) previous definition of Golden Parachute no longer relevant;
- (ii) requires to introduce a face-lifted agent's utility function;

글 제 제 글 제

Objectives of our work

- Rigorous formulation (and proofs)
- Golden Parachute does not always exist!
- Something happens when Agent and Principal have different discount factors
 - (i) previous definition of Golden Parachute no longer relevant;
- (ii) requires to introduce a face-lifted agent's utility function;
- (iii) contrasting some conjectures/claims by Sannikov.

글 제 제 글 제

Face-lifted utility Some cases of NGP Numerical results To conclude

Face-lifted utility

• When Principal stops contract at τ , Agent is indifferent between immediate lump-sum payment, and stopping working and receiving a lifetime rent.

Image: A mathematical states and a mathem

글 🖌 🔺 글 🕨

æ

Face-lifted utility Some cases of NGP Numerical results To conclude

Face-lifted utility

• When Principal stops contract at τ , Agent is indifferent between immediate lump-sum payment, and stopping working and receiving a lifetime rent.

• However, is **Principal** indifferent?

글 제 제 글 제

æ

Face-lifted utility Some cases of NGP Numerical results To conclude

Face-lifted utility

- When Principal stops contract at τ , Agent is indifferent between immediate lump-sum payment, and stopping working and receiving a lifetime rent.
- However, is Principal indifferent?
- Let $y^{y_0,\pi}(0) = y_0, \ \dot{y}^{y_0,\pi}(t) = r(y^{y_0,p}(t) + u(\pi(t))), \ t > 0.$ Then

 $y_0 = e^{-rT} y^{y_0,\pi}(T) - \int_0^T e^{-rt} u(\pi(t)) dt, \ T \le T_0^{y_0,p} := \inf \{t \ge 0 : y^{y_0,p}(t) \le 0\}.$

▲□ ► ▲ ■ ► ▲ ■ ● ○ Q ○ 12/19

Face-lifted utility Some cases of NGP Numerical results To conclude

Face-lifted utility

- When Principal stops contract at τ , Agent is indifferent between immediate lump-sum payment, and stopping working and receiving a lifetime rent.
- However, is Principal indifferent?
- Let $y^{y_0,\pi}(0) = y_0, \ \dot{y}^{y_0,\pi}(t) = r(y^{y_0,p}(t) + u(\pi(t))), \ t > 0.$ Then

 $y_0 = \mathrm{e}^{-rT} y^{y_0,\pi}(T) - \int_0^T \mathrm{e}^{-rt} u(\pi(t)) \mathrm{d}t, \ T \leq T_0^{y_0,p} := \inf \{t \geq 0 : y^{y_0,p}(t) \leq 0\}.$

Agent is indifferent between
 (i) lump-sum payment ξ at τ,

Face-lifted utility Some cases of NGP Numerical results To conclude

Face-lifted utility

- When Principal stops contract at τ , Agent is indifferent between immediate lump-sum payment, and stopping working and receiving a lifetime rent.
- However, is Principal indifferent?
- Let $y^{y_0,\pi}(0) = y_0, \ \dot{y}^{y_0,\pi}(t) = r(y^{y_0,\rho}(t) + u(\pi(t))), \ t > 0.$ Then

 $y_0 = \mathrm{e}^{-rT} y^{y_0,\pi}(T) - \int_0^T \mathrm{e}^{-rt} u(\pi(t)) \mathrm{d}t, \ T \leq T_0^{y_0,p} := \inf \{t \geq 0 : y^{y_0,p}(t) \leq 0\}.$

- Agent is indifferent between
 (i) lump-sum payment ξ at τ,
 - (ii) continuous payment $\pi(t)$ and zero effort on $[\tau, \tau + T]$, retirement at $\tau + T$, with lump-sum payment $\xi' := -F(y^{u(\xi),\pi}(T))$.

Face-lifted utility Some cases of NGP Numerical results To conclude

Face-lifted utility

- When Principal stops contract at τ , Agent is indifferent between immediate lump-sum payment, and stopping working and receiving a lifetime rent.
- However, is Principal indifferent?
- Let $y^{y_0,\pi}(0) = y_0, \ \dot{y}^{y_0,\pi}(t) = r(y^{y_0,p}(t) + u(\pi(t))), \ t > 0.$ Then

 $y_0 = \mathrm{e}^{-rT} y^{y_0,\pi}(T) - \int_0^T \mathrm{e}^{-rt} u(\pi(t)) \mathrm{d}t, \ T \leq T_0^{y_0,p} := \inf \{t \geq 0 : y^{y_0,p}(t) \leq 0\}.$

- Agent is indifferent between
 (i) lump-sum payment ξ at τ,
 - (*ii*) continuous payment $\pi(t)$ and zero effort on $[\tau, \tau + T]$, retirement at $\tau + T$, with lump-sum payment $\xi' := -F(y^{u(\xi), \pi}(T))$.

Face-lifted (inverse) utility

$$\overline{F}(y_0) := \sup_{\pi \ge 0} \sup_{T \in [0, T_0^{y_0, \pi}]} \left\{ \mathrm{e}^{-\rho T} F(y^{y_0, \rho}(T)) - \int_0^T \rho \mathrm{e}^{-\rho t} \pi(t) \mathrm{d}t \right\}.$$

Face-lifted utility Some cases of NGP Numerical results To conclude

Some comments

• When $\delta = 1$, Sannikov is right: no need to defer retirement, and F is the appropriate function for optimal stopping.

(日)

2

- When $\delta = 1$, Sannikov is right: no need to defer retirement, and F is the appropriate function for optimal stopping.
- When $\delta \neq 1$, $\overline{F} > F$, and deferring retirement until continuation utility reaches 0 is optimal!

(日)

- When $\delta = 1$, Sannikov is right: no need to defer retirement, and F is the appropriate function for optimal stopping.
- When $\delta \neq 1$, $\overline{F} > F$, and deferring retirement until continuation utility reaches 0 is optimal!
- Two regimes however

(i) If $\delta \gamma > 1$, replace F by \overline{F} in Principal's criterion (relaxed formulation).

イロト イポト イヨト イヨト ニヨー

- When $\delta = 1$, Sannikov is right: no need to defer retirement, and F is the appropriate function for optimal stopping.
- When $\delta \neq 1$, $\overline{F} > F$, and deferring retirement until continuation utility reaches 0 is optimal!
- Two regimes however
 - (i) If $\delta \gamma > 1$, replace F by \overline{F} in Principal's criterion (relaxed formulation).
- (ii) If $\delta\gamma\leq$ 1, problem degenerates! Possible to find a sequence of contracts, for which

- When $\delta = 1$, Sannikov is right: no need to defer retirement, and F is the appropriate function for optimal stopping.
- When $\delta \neq 1$, $\overline{F} > F$, and deferring retirement until continuation utility reaches 0 is optimal!
- Two regimes however
 - (i) If $\delta \gamma > 1$, replace F by \overline{F} in Principal's criterion (relaxed formulation).
- (ii) If $\delta\gamma\leq$ 1, problem degenerates! Possible to find a sequence of contracts, for which
 - Agent makes maximal effort;

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 _ のへで、

- When $\delta = 1$, Sannikov is right: no need to defer retirement, and F is the appropriate function for optimal stopping.
- When $\delta \neq 1$, $\overline{F} > F$, and deferring retirement until continuation utility reaches 0 is optimal!
- Two regimes however
 - (i) If $\delta \gamma > 1$, replace F by \overline{F} in Principal's criterion (relaxed formulation).
- (ii) If $\delta\gamma\leq$ 1, problem degenerates! Possible to find a sequence of contracts, for which
 - Agent makes maximal effort;
 - Agent receives infinite utility;

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト …

- When $\delta = 1$, Sannikov is right: no need to defer retirement, and F is the appropriate function for optimal stopping.
- When $\delta \neq 1$, $\overline{F} > F$, and deferring retirement until continuation utility reaches 0 is optimal!
- Two regimes however
 - (i) If $\delta \gamma > 1$, replace F by \overline{F} in Principal's criterion (relaxed formulation).
- (ii) If $\delta\gamma\leq$ 1, problem degenerates! Possible to find a sequence of contracts, for which
 - Agent makes maximal effort;
 - Agent receives infinite utility;
 - Principal reaches the upper bound of his utility.

(日)

-

Face-lifted utility Some cases of NGP Numerical results To conclude

Golden Parachute revisited

Definition

We say that the contracting model exhibits a Golden Parachute, if there exists an optimal contract $(\tau^*, \pi^*, \xi^*) \in \mathfrak{C}_R$ for the relaxed formulation of Principal's problem such that $\tau^* > 0$, and $\mathbb{P}[\xi^* > 0] > 0$.

< < >>

3

14/19

Face-lifted utility Some cases of NGP Numerical results To conclude

Golden Parachute revisited

Definition

We say that the contracting model exhibits a Golden Parachute, if there exists an optimal contract $(\tau^*, \pi^*, \xi^*) \in \mathfrak{C}_R$ for the relaxed formulation of Principal's problem such that $\tau^* > 0$, and $\mathbb{P}[\xi^* > 0] > 0$.

In words, a Golden Parachute means that Agent

• ceases any effort at some positive stopping time;

글 에 에 글 에 다

3

Face-lifted utility Some cases of NGP Numerical results To conclude

Golden Parachute revisited

Definition

We say that the contracting model exhibits a Golden Parachute, if there exists an optimal contract $(\tau^*, \pi^*, \xi^*) \in \mathfrak{C}_R$ for the relaxed formulation of Principal's problem such that $\tau^* > 0$, and $\mathbb{P}[\xi^* > 0] > 0$.

In words, a Golden Parachute means that Agent

- ceases any effort at some positive stopping time;
- and retires with non-zero payment (lump-sum or lifetime payment rate)

ヨト・モート

Face-lifted utility Some cases of NGP Numerical results To conclude

Golden Parachute revisited

Definition

We say that the contracting model exhibits a Golden Parachute, if there exists an optimal contract $(\tau^*, \pi^*, \xi^*) \in \mathfrak{C}_R$ for the relaxed formulation of Principal's problem such that $\tau^* > 0$, and $\mathbb{P}[\xi^* > 0] > 0$.

In words, a Golden Parachute means that Agent

- ceases any effort at some positive stopping time;
- and retires with non-zero payment (lump-sum or lifetime payment rate)

From the PDE point of view

Definition

The model exhibits a Golden Parachute if Principal's relaxed value function satisfies $v = \overline{F}$ on $[y_{gp}, +\infty)$ for some $y_{gp} > 0$.

Some cases of NGP

Face-lifted utility Some cases of NGP Numerical results To conclude

Proposition

Let $\beta := h'(0)$. Then there is No Golden Parachute whenever either

(NGP1) $\beta = 0;$

Dylan Possamaï Golden Parachute in continuous time contracting

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

Some cases of NGP

Face-lifted utility Some cases of NGP Numerical results To conclude

Proposition

Let $\beta := h'(0)$. Then there is No Golden Parachute whenever either

(NGP1) $\beta = 0;$

(NGP2) or $\beta > 0$, \overline{F}'' is non-increasing, and " β large enough";

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

Some cases of NGP

Face-lifted utility Some cases of NGP Numerical results To conclude

Proposition

Let $\beta := h'(0)$. Then there is No Golden Parachute whenever either

(NGP1) $\beta = 0;$

(NGP2) or $\beta > 0$, \overline{F}'' is non-increasing, and " β large enough";

(NGP3) or $\beta > 0$, A is an interval, h' is convex, and " β large enough".

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○臣 ○ のへで

Face-lifted utility Some cases of NGP Numerical results To conclude

Numerical result 1

Same parameters as in Sannikov '08: $\gamma=$ 2, $\eta=$ 0.05, h= 0.5, $\beta=$ 0.4, and $\delta=$ 1

Figure: v (red), F (blue): Golden Parachute exists

3

Face-lifted utility Some cases of NGP Numerical results To conclude

Numerical result 2

$$\gamma=3/2,~\eta=h=1,~eta=0.01,$$
 and $\delta=3/4$

Figure: v (red), \overline{F} (green), F (blue), Golden Parachute exists

æ

Face-lifted utility Some cases of NGP Numerical results To conclude

Conclusions

• Proof of well-posedness of DPE is surprisingly hard (at least for us!).

2

Conclusions

- Proof of well-posedness of DPE is surprisingly hard (at least for us!).
- Construct 'sharp' super-solutions, use Perron's method, and comparison theorem.

(日)

Ξ.

Conclusions

- Proof of well-posedness of DPE is surprisingly hard (at least for us!).
- Construct 'sharp' super-solutions, use Perron's method, and comparison theorem.
- \bullet Sannikov's proof has gaps, as he assumes that $y_{\rm gp}$ is always finite, which we cannot prove.

(日)

э.

Conclusions

- Proof of well-posedness of DPE is surprisingly hard (at least for us!).
- Construct 'sharp' super-solutions, use Perron's method, and comparison theorem.
- \bullet Sannikov's proof has gaps, as he assumes that $y_{\rm gp}$ is always finite, which we cannot prove.
- When $\delta > 1$, solution must always be decreasing (meaning no informational rent), which is very different from Sannikov's message.

(日)

3

Conclusions

- Proof of well-posedness of DPE is surprisingly hard (at least for us!).
- Construct 'sharp' super-solutions, use Perron's method, and comparison theorem.
- \bullet Sannikov's proof has gaps, as he assumes that $y_{\rm gp}$ is always finite, which we cannot prove.
- When $\delta > 1$, solution must always be decreasing (meaning no informational rent), which is very different from Sannikov's message.
- Preliminary results for more general utility functions (negative powers or logarithm) seem to show that solution is very sensitive to data.

(日)

3

Face-lifted utility Some cases of NGP Numerical results **To conclude**

Thank you for your attention!

2

19/19

글 🖌 🔺 글 🕨