Risk seekers

Noise, trade and the rationalizing effect of market impact on convex preferences

Efstathios (Stathi) Avdis
University of Alberta
The paper in a nutshell

Question and context
- Can we rationalize market inefficiency?

How it works
- market impact
 - risk seeking

Ideas for empiricists
- What we need, what we get
Can we rationalize market inefficiency?

Market inefficiency appears inconsistent with rationality
- Inefficiency, trade, and noise are a joint problem

Obstacle: with “standard” risk preferences, if everyone is rational, there is no equilibrium! (Tirole, 1982; Milgrom & Stokey, 1982)

Existing theories & a distinction
- Behavioral ideas:
 - noise traders
 - heterogenous beliefs
- Exogenous sources:
 - stochastic supply
 - hedging
 - random endowments
Rational expectations with risk-seeking attitudes: assumptions

A risky asset with price P, dividend $D \sim \mathcal{N}(0, \tau_D^{-1})$

N traders, where each trader i has

- utility $e^{-\delta \pi}$ over profit π, with risk aversion $\delta < 0$
- private signal $s_i = D + \epsilon_i$, with $\epsilon_i \sim \mathcal{N}(0, \tau_i^{-1})$ i.i.d. over i
- demand function X_i, linear in signals

\[X_i = \beta_i s_i - \gamma_i P \]
Rational expectations with risk-seeking attitudes: results

Price linear in signals

\[P = \lambda \sum_n \beta_n s_n = \left(\lambda \sum_n \beta_n \right) D + \text{noise} \]

Trading intensity

\[\beta_i = \frac{\tau_i}{\left(2 - \frac{1}{N}\right) \rho + \delta} \]

where

\[\rho = \frac{\tau_D}{1 - \sum_n \beta_n} \frac{N}{N - 1} \]

- \(\rho = -\delta \), so more risk seeking \(\Rightarrow \) more market impact
- 2\text{nd} ord. cond. \(\propto \delta < 0 \), so risk seeking \(\Rightarrow \) effectively risk-averse

Our goal: understanding this picture

• higher market impact \(\uparrow \) higher risk appetite
• lower aggregate \(\Sigma_n \beta_n \) \(\downarrow \) lower risk appetite

Attitude towards risk: aversion / neutrality / seeking

Risk “appetite” \(\rho \)

Rational expectations with risk-seeking attitudes: results

Our goal: understanding this picture

• higher market impact \(\uparrow \) higher risk appetite
• lower aggregate \(\Sigma_n \beta_n \) \(\downarrow \) lower risk appetite

Attitude towards risk: aversion / neutrality / seeking
Empirical relevance

Isn’t risk seeking “weird”?

1. Cheaper information ⇒ more liquid prices
 • Not shared by other models (noise traders etc.)
2. Higher risk appetite ⇒ noisier, thus riskier prices
3. Hirschleifer effect
 • more information ⇒ everyone is worse off
 • information “destroys” insurance
 • refinement: with risk seeking, more information ⇒ everyone is better off
Summary

• A fully rational theory of market inefficiency

• More risk seeking ⇒ more market impact
 ↓
 traders “pull the brake” harder

• Ideas for empiricists