A non-admitted role of central banks: Debt-dependent quantitative monetary policies

20th Conference on Research on Economic Theory and Econometrics

Vasiliki Dimakopoulou, George Economides, Apostolis Philippopoulos and Petros Varthalitis

July 14, 2022
When real interest rates on sovereign bonds exceed the economy’s real growth rate, some kind of correction is required to make the path of public debt non-explosive (e.g. Blanchard, 2019).
Motivation

- When real interest rates on sovereign bonds exceed the economy’s real growth rate, some kind of correction is required to make the path of public debt non-explosive (e.g. Blanchard, 2019).
- Traditionally, this correction has been in the form of debt-dependent fiscal policies.
When real interest rates on sovereign bonds exceed the economy’s real growth rate, some kind of correction is required to make the path of public debt non-explosive (e.g. Blanchard, 2019).

Traditionally, this correction has been in the form of debt-dependent fiscal policies.

Actually, this belongs to the so-called conventional policy assignment (Leeper, 1991) according to which:
Motivation

- When real interest rates on sovereign bonds exceed the economy’s real growth rate, some kind of correction is required to make the path of public debt non-explosive (e.g. Blanchard, 2019).
- Traditionally, this correction has been in the form of debt-dependent fiscal policies.
- Actually, this belongs to the so-called conventional policy assignment (Leeper, 1991) according to which:
 - fiscal policy instruments react to public debt
When real interest rates on sovereign bonds exceed the economy’s real growth rate, some kind of correction is required to make the path of public debt non-explosive (e.g. Blanchard, 2019).

Traditionally, this correction has been in the form of debt-dependent fiscal policies.

Actually, this belongs to the so-called conventional policy assignment (Leeper, 1991) according to which:

- fiscal policy instruments react to public debt
- monetary (nominal interest rate) policy reacts to inflation
When real interest rates on sovereign bonds exceed the economy’s real growth rate, some kind of correction is required to make the path of public debt non-explosive (e.g. Blanchard, 2019).

Traditionally, this correction has been in the form of debt-dependent fiscal policies.

Actually, this belongs to the so-called conventional policy assignment (Leeper, 1991) according to which:

- fiscal policy instruments react to public debt
- monetary (nominal interest rate) policy reacts to inflation
- typically, this policy mix ensures stability and determinacy.
Motivation

- However, since the 2008 global financial crisis, there has been a massive expansion of quantitative monetary policies.
Motivation

- However, since the 2008 global financial crisis, there has been a massive expansion of quantitative monetary policies.
- We will focus on the Eurozone (EZ).
• However, since the 2008 global financial crisis, there has been a massive expansion of quantitative monetary policies.

• We will focus on the Eurozone (EZ).

• According to the official statement of the ECB “... the APP is to support the monetary policy transmission mechanism and provide the amount of policy accommodation needed to ensure price stability”.
Motivation

- However, since the 2008 global financial crisis, there has been a massive expansion of quantitative monetary policies.
- We will focus on the Eurozone (EZ).
- According to the official statement of the ECB “... the APP is to support the monetary policy transmission mechanism and provide the amount of policy accommodation needed to ensure price stability”.
- No reference to debt management although at the end of May 2022 ECB’s holdings under the PSPP are 2,581 bn EUR and under the PEPP are 1,718 bn EUR.
However, since the 2008 global financial crisis, there has been a massive expansion of quantitative monetary policies.

We will focus on the Eurozone (EZ).

According to the official statement of the ECB “... the APP is to support the monetary policy transmission mechanism and provide the amount of policy accommodation needed to ensure price stability”.

No reference to debt management although at the end of May 2022 ECB’s holdings under the PSPP are 2,581 bn EUR and under the PEPP are 1,718 bn EUR.

During the same period fiscal policies have been set exogenously to support the economy without reacting to debt imbalances.
Motivation

- However, since the 2008 global financial crisis, there has been a massive expansion of quantitative monetary policies.
- We will focus on the Eurozone (EZ).
- According to the official statement of the ECB “... the APP is to support the monetary policy transmission mechanism and provide the amount of policy accommodation needed to ensure price stability”.
- No reference to debt management although at the end of May 2022 ECB’s holdings under the PSPP are 2,581 bn EUR and under the PEPP are 1,718 bn EUR.
- During the same period fiscal policies have been set exogenously to support the economy without reacting to debt imbalances.
- It seems that the politically unpleasant task of debt sustainability has fallen on Central Banks.
What we do in this paper

- We explore the possibility that quantitative monetary policies can substitute tax-spending debt stabilization policies when it comes to stability and determinacy.
What we do in this paper

- We explore the possibility that quantitative monetary policies can substitute tax-spending debt stabilization policies when it comes to stability and determinacy.
- We do so in the context of a rather standard New Keynesian general equilibrium model solved using common parameter values and data from the EZ.
Step A: We shock the initial steady state by assuming an adverse supply shock (to mimic an economic disaster) and, at the same time, an increase in government transfers (to mimic the usual fiscal stimulus that counters economic disasters) - see Hall and Sargent (2021).
Step A: We shock the initial steady state by assuming an adverse supply shock (to mimic an economic disaster) and, at the same time, an increase in government transfers (to mimic the usual fiscal stimulus that counters economic disasters) - see Hall and Sargent (2021).

- This economy, if left on its own, is dynamically unstable because of explosive public debt.
Step A: We shock the initial steady state by assuming an adverse supply shock (to mimic an economic disaster) and, at the same time, an increase in government transfers (to mimic the usual fiscal stimulus that counters economic disasters) - see Hall and Sargent (2021).

- This economy, if left on its own, is dynamically unstable because of explosive public debt.
- A policy instrument needs to react to outstanding public debt to restore stability.
Step A: We shock the initial steady state by assuming an adverse supply shock (to mimic an economic disaster) and, at the same time, an increase in government transfers (to mimic the usual fiscal stimulus that counters economic disasters) - see Hall and Sargent (2021).

- This economy, if left on its own, is dynamically unstable because of explosive public debt.
- A policy instrument needs to react to outstanding public debt to restore stability.

Step B: We experiment with different debt-contingent policy instruments, both fiscal and (quantitative) monetary.
Literature on fiscal-monetary policy interactions

- Leeper (1991)
- Reis (2016, 2017)
- Sims and Wu (2020)
- Bassetto and Sargent (2020)
- Hall and Sargent (2021)
Our model

- Households

Private firms: final good firms, intermediate good firms: Dixit-Stiglitz, Rotemberg nominal fixities, borrowing constraint, production-price-corporate finance decisions

Private banks: assets: loans to firms, government bonds, reserves held at the CB
liabilities: receive deposits and loans from the CB

Our model similar to Cúrdia and Woodford (2010, 2011) which means that market segmentation and costly financial intermediation give rise to asset pricing wedges and imperfect substitutability that break Wallace’ s (1981) neutrality proposition and give a real role to quantitative monetary policies (Walsh, 2017, chapter 11, for a review)
Households

- consume, hold currency and can keep deposits at private banks. They also own the private firms and banks and so receive their profits. They face a cash-in-advance constraint.
Our model

- **Households**
 - consume, hold currency and can keep deposits at private banks. They also own the private firms and banks and so receive their profits. They face a cash-in-advance constraint.

- **Private firms**
Our model

- **Households**
 - consume, hold currency and can keep deposits at private banks. They also own the private firms and banks and so receive their profits. They face a cash-in-advance constraint.

- **Private firms**
 - final good firms
Our model

- **Households**
 - consume, hold currency and can keep deposits at private banks. They also own the private firms and banks and so receive their profits. They face a cash-in-advance constraint.

- **Private firms**
 - final good firms
 - intermediate goods firms: Dixit-Stiglitz, Rotemberg nominal fixities, borrowing constraint, production-price-corporate finance decisions
Our model

- **Households**
 - consume, hold currency and can keep deposits at private banks. They also own the private firms and banks and so receive their profits. They face a cash-in-advance constraint.

- **Private firms**
 - final good firms
 - intermediate goods firms: Dixit-Stiglitz, Rotemberg nominal fixities, borrowing constraint, production-price-corporate finance decisions

- **Private banks**
Our model

- **Households**
 - consume, hold currency and can keep deposits at private banks. They also own the private firms and banks and so receive their profits. They face a cash-in-advance constraint.

- **Private firms**
 - final good firms
 - intermediate goods firms: Dixit-Stiglitz, Rotemberg nominal fixities, borrowing constraint, production-price-corporate finance decisions

- **Private banks**
 - assets: loans to firms, government bonds, reserves held at the CB
Our model

- **Households**
 - consume, hold currency and can keep deposits at private banks. They also own the private firms and banks and so receive their profits. They face a cash-in-advance constraint.

- **Private firms**
 - final good firms
 - intermediate goods firms: Dixit-Stiglitz, Rotemberg nominal fixities, borrowing constraint, production-price-corporate finance decisions

- **Private banks**
 - assets: loans to firms, government bonds, reserves held at the CB
 - liabilities: receive deposits and loans from the CB
Our model

- **Households**
 - consume, hold currency and can keep deposits at private banks. They also own the private firms and banks and so receive their profits. They face a cash-in-advance constraint.

- **Private firms**
 - final good firms
 - intermediate goods firms: Dixit-Stiglitz, Rotemberg nominal fixities, borrowing constraint, production-price-corporate finance decisions

- **Private banks**
 - assets: loans to firms, government bonds, reserves held at the CB
 - liabilities: receive deposits and loans from the CB
 - model similar to Cúrdia and Woodford (2010, 2011)
Our model

- **Households**
 - consume, hold currency and can keep deposits at private banks. They also own the private firms and banks and so receive their profits. They face a cash-in-advance constraint.

- **Private firms**
 - final good firms
 - intermediate goods firms: Dixit-Stiglitz, Rotemberg nominal fixities, borrowing constraint, production-price-corporate finance decisions

- **Private banks**
 - assets: loans to firms, government bonds, reserves held at the CB
 - liabilities: receive deposits and loans from the CB
 - model similar to Cúrdia and Woodford (2010, 2011)
 - which means that market segmentation and costly financial intermediation give rise to asset pricing wedges and imperfect substitutability that break Wallace's (1981) neutrality proposition and give a real role to quantitative monetary policies (Walsh, 2017, chapter 11, for a review)
Our model

- Treasury
Our model

- Treasury
 - spending items to GDP (s_t^t, s_t^g, s_t^c).
Our model

- **Treasury**
 - spending items to GDP (s_t^t, s_t^g, s_t^c).
 - tax rates (τ^y, τ^π, τ^c).
Our model

- **Treasury**
 - spending items to GDP (s_t^t, s_t^g, s_t^c).
 - tax rates (τ^Y, τ^π, τ^C).
Our model

- **Treasury**
 - spending items to GDP (s_t^t, s_t^g, s_t^c).
 - tax rates $(\tau^y, \tau^\pi, \tau^c)$.
 - budget constraint.
Our model

- Central Bank
Our model

- **Central Bank**
 - assets: loans to private banks, government bonds purchased from private banks in the secondary market
Central Bank

- assets: loans to private banks, government bonds purchased from private banks in the secondary market
- liabilities: banknotes and reserves (TARGET2 balances are cancelled out at ES level)
Central Bank

- assets: loans to private banks, government bonds purchased from private banks in the secondary market
- liabilities: banknotes and reserves (TARGET2 balances are cancelled out at ES level)
- budget constraint
Our model

- **Central Bank**
 - assets: loans to private banks, government bonds purchased from private banks in the secondary market
 - liabilities: banknotes and reserves (TARGET2 balances are cancelled out at ES level)
 - budget constraint

- In simple words, the issuance of liabilities is used to finance, via loans to private banks, loans to private companies and national governments, via government bonds purchases in the secondary market.
There is a rich menu of choices regarding the classification between exogenously set monetary policy instruments and the residually determined one.
There is a rich menu of choices regarding the classification between exogenously set monetary policy instruments and the residually determined one.

We chose a classification that is more intuitive and more consistent with the conduct of fiscal and monetary policy followed in practice (see e.g. Mishkin and Eakins, 1998).
There is a rich menu of choices regarding the classification between exogenously set monetary policy instruments and the residually determined one.

We chose a classification that is more intuitive and more consistent with the conduct of fiscal and monetary policy followed in practice (see e.g. Mishkin and Eakins, 1998).

Fiscal policy instruments:
There is a rich menu of choices regarding the classification between exogenously set monetary policy instruments and the residually determined one.

We chose a classification that is more intuitive and more consistent with the conduct of fiscal and monetary policy followed in practice (see e.g. Mishkin and Eakins, 1998).

Fiscal policy instruments:

- The tax-spending policy instruments are set by the Treasury.
There is a rich menu of choices regarding the classification between exogenously set monetary policy instruments and the residually determined one.

We chose a classification that is more intuitive and more consistent with the conduct of fiscal and monetary policy followed in practice (see e.g. Mishkin and Eakins, 1998).

Fiscal policy instruments:

- The tax-spending policy instruments are set by the Treasury.
- The end-of-period government bonds follow residually to close the Treasury’s budget constraint.
Monetary policy instruments:
Monetary policy instruments:

- The nominal interest rate on reserves and central banks’ loans, i_t^r and i_t^z, are set by the CB, while their respective quantities are demand determined.
Monetary policy instruments:

- The nominal interest rate on reserves and central banks’ loans, \(i_t^r \) and \(i_t^z \), are set by the CB, while their respective quantities are demand determined.
- The real value of the central bank’s government bonds purchases in the secondary market and their respective price, \(\Lambda_t \) and \(\Phi_t \), are set by the CB.
Monetary policy instruments:

- The nominal interest rate on reserves and central banks’ loans, \(i^r_t \) and \(i^z_t \), are set by the CB, while their respective quantities are demand determined.
- The real value of the central bank’s government bonds purchases in the secondary market and their respective price, \(\Lambda_t \) and \(\Phi_t \), are set by the CB.
- The lack of “fiscal backing” in the EZ implies that the CB’s dividends to Treasury, \(n_t \), is an exogenous policy instrument (see Del Negro and Sims (2015), Hall and Reis (2017)). Also, the lack of “fiscal support” in the EZ, implies the non-negativity constraint: \(n_t \geq 0 \).
Monetary policy instruments:

- The nominal interest rate on reserves and central banks’ loans, i_t^r and i_t^Z, are set by the CB, while their respective quantities are demand determined.
- The real value of the central bank’s government bonds purchases in the secondary market and their respective price, Λ_t and Φ_t, are set by the CB.
- The lack of “fiscal backing” in the EZ implies that the CB’s dividends to Treasury, n_t, is an exogenous policy instrument (see Del Negro and Sims (2015), Hall and Reis (2017)). Also, the lack of “fiscal support” in the EZ, implies the non-negativity constraint: $n_t \geq 0$.
- To the extent that currency held by the non-bank public and reserves, as well as central bank loans held by private banks are demand determined, the central bank’s budget constraint can provide an extra equation to determine the inflation rate or the price level.
Fiscal policy rules

- We adopt a rule-like approach to policy where the exogenous policy instruments, in addition to a conventional exogenous $AR(1)$ component, can also react to debt imbalances.

- The rules of the tax-spending instruments are:

 \[s_t = \rho^s s_{t-1} + (1 - \rho^s) s - \gamma^s \left(\frac{b_t}{y_t} - \frac{b}{y} \right) \]

 \[\tau_t = \rho^\tau \tau_t + (1 - \rho^\tau) \tau_{t-1} + \gamma^\tau \left(\frac{b_t}{y_t} - \frac{b}{y} \right) \]
Monetary policy rules

- The policy rates, \(i_t^Z \) and \(i_t^r \), follow Taylor type rules of the form:

\[
\log (1 + i_t) = (1 - \rho) \log (1 + i) + \rho \log (1 + i_{t-1}) + \gamma \pi \log \left(\frac{\pi_t}{\pi} \right)
\]

- The central bank purchases in the secondary market the fraction \((1 - \Lambda_t)\) of outstanding government bonds, at a constant price \(\Phi_t \), where \((1 - \Lambda_t)\) satisfies:

\[
\Phi_t (1 - \Lambda_t) \frac{p_{t-1}}{p_t} b_{t-1} = B_t y_t
\]

and

\[
B_t = \rho^B B_{t-1} + \gamma^B \left(\frac{b_t}{y_t} - \frac{b}{y} \right)
\]
The CB pays out to Treasury its non-negative net income every period (see e.g. Reis, 2016, 2017):

\[
 n_t = \left(m_{h,t} - \frac{p_{t-1}}{p_t} m_{t-1} \right) + i_t^z \frac{p_{t-1}}{p_t} z_{p,t-1} + \\
 + i_t^b (1 - \Lambda_t) \frac{p_{t-1}}{p_t} b_{t-1} - i_t^r \frac{p_{t-1}}{p_t} m_{p,t-1}
\]

and

\[
 n_t \geq 0
\]
Solution methodology

Depart from the 2019 solution.
Solution methodology

- Depart from the 2019 solution.
- Transition dynamics driven by
 - an adverse supply shock
 - an increase in government transfers
 - policy reaction to debt imbalances

Compute long-run output multipliers.

Deterministic (perfect foresight equilibrium); non-linear dynamics; use dynare toolbox.
Solution methodology

- Depart from the 2019 solution.
- Transition dynamics driven by
 - an adverse supply shock
Depart from the 2019 solution.

Transition dynamics driven by
- an adverse supply shock
- an increase in government transfers
Solution methodology

- Depart from the 2019 solution.
- Transition dynamics driven by
 - an adverse supply shock
 - an increase in government transfers
 - policy reaction to debt imbalances
Solution methodology

- Depart from the 2019 solution.
- Transition dynamics driven by
 - an adverse supply shock
 - an increase in government transfers
 - policy reaction to debt imbalances
- Compute long-run output multipliers.
Solution methodology

- Depart from the 2019 solution.
- Transition dynamics driven by
 - an adverse supply shock
 - an increase in government transfers
 - policy reaction to debt imbalances
- Compute long-run output multipliers.
- Deterministic (perfect foresight equilibrium); non-linear dynamics; use dynare toolbox.
To quantify the impact of the different policies on the economy, we plot of the Impulse Response Functions (IRFs) of the main macroeconomic variables and calculate a “multiplier” (close to Uhlig’s, 2010, multipliers), φ_t, which is given by:

$$\varphi_t = \sum_{s=0}^{t} \frac{y_s - y}{(1 + i_b)^s}$$

We have experimented with other criteria, like the discounted lifetime utility in terms of consumption equivalents (see e.g. Lucas (1990)) and the welfare losses (see e.g. Schmitt-Grohé and Uribe (2007)), and the results are quantitatively close.
Without some kind of feedback reaction to the debt gap there is no equilibrium solution. This means that, without some kind of policy correction, public debt will be explosive.
Without some kind of feedback reaction to the debt gap there is no equilibrium solution. This means that, without some kind of policy correction, public debt will be explosive.

Policy scenario:

- Conventional policy assignment: …scal policy instruments adjust to ensure public debt stability, while monetary policy controls inflation.
- We experiment with one instrument at a time: government investment, government consumption, consumption tax rate, income tax rate and profit tax rate (in this order).
- IRFs
- Fiscal dominance: quantitative monetary policy substitutes fiscal policy when it comes to debt stability and determinancy.
- We switch off fiscal reaction to debt and allow CB’s government bonds’ purchases in the secondary market to react to debt imbalances.

For all policy rules considered we set the persistence parameter \(\rho = 0 \), while we set the feedback parameter, \(\gamma \), to the lowest possible value that ensures dynamic stability.
Without some kind of feedback reaction to the debt gap there is no equilibrium solution. This means that, without some kind of policy correction, public debt will be explosive.

Policy scenario:

- “Conventional policy assignment”: fiscal policy instruments adjust to ensure public debt stability, while monetary policy controls inflation.
Without some kind of feedback reaction to the debt gap there is no equilibrium solution. This means that, without some kind of policy correction, public debt will be explosive.

Policy scenario:

“Conventional policy assignment”: fiscal policy instruments adjust to ensure public debt stability, while monetary policy controls inflation.

- we experiment with one instrument at a time: government investment, government consumption, consumption tax rate, income tax rate and profit tax rate (in this order).
Policy scenarios

- Without some kind of feedback reaction to the debt gap there is no equilibrium solution. This means that, without some kind of policy correction, public debt will be explosive.

- Policy scenarios:
 - **“Conventional policy assignment”**: fiscal policy instruments adjust to ensure public debt stability, while monetary policy controls inflation.
 - we experiment with one instrument at a time: government investment, government consumption, consumption tax rate, income tax rate and profit tax rate (in this order).
 - **"Fiscal dominance"**: quantitative monetary policy substitutes fiscal policy when it comes to debt stability and determinancy.
Without some kind of feedback reaction to the debt gap there is no equilibrium solution. This means that, without some kind of policy correction, public debt will be explosive.

Policy scenario:

- **“Conventional policy assignment”**: fiscal policy instruments adjust to ensure public debt stability, while monetary policy controls inflation.
 - we experiment with one instrument at a time: government investment, government consumption, consumption tax rate, income tax rate and profit tax rate (in this order).

- **"Fiscal dominance"**: quantitative monetary policy substitutes fiscal policy when it comes to debt stability and determinancy.
 - we switch off fiscal reaction to debt and allow CB’s government bonds’ purchases in the secondary market to react to debt imbalances.
Without some kind of feedback reaction to the debt gap there is no equilibrium solution. This means that, without some kind of policy correction, public debt will be explosive.

Policy scenario:

- **“Conventional policy assignment”:** fiscal policy instruments adjust to ensure public debt stability, while monetary policy controls inflation.
 - we experiment with one instrument at a time: government investment, government consumption, consumption tax rate, income tax rate and profit tax rate (in this order).

- **"Fiscal dominance":** quantitative monetary policy substitutes fiscal policy when it comes to debt stability and determinancy.
 - we switch off fiscal reaction to debt and allow CB’s government bonds’ purchases in the secondary market to react to debt imbalances.

For all policy rules considered we set the persistence parameter $\rho = 0.8$, while we set the feedback parameter, γ, to the lowest possible value that ensures dynamic stability.
CB’s government bond purchases
Fiscal and monetary policy instruments
The impact of economic policy

\[\phi_t \]

(CRETE)
Vasiliki Dimakopoulou
July 14, 2022
Debt-dependent quantitative monetary policy can ensure stability and determinacy at a smaller real cost than tax debt-dependent policies.
Debt-dependent quantitative monetary policy can ensure stability and determinacy at a smaller real cost than tax debt-dependent policies.

But this:
Conclusions

- Debt-dependent quantitative monetary policy can ensure stability and determinacy at a smaller real cost than tax debt-dependent policies.
- But this:
 - requires that, at some point in time, the CB sells a fraction of the acquired bonds
Conclusions

- Debt-dependent quantitative monetary policy can ensure stability and determinacy at a smaller real cost than tax debt-dependent policies.

- But this:
 - requires that, at some point in time, the CB sells a fraction of the acquired bonds
 - makes debt-to-GDP ratio more volatile: the ratio de-escalates quickly in the short-run but increases again in the medium-run when the CB sells government bonds
Conclusions

- Debt-dependent quantitative monetary policy can ensure stability and determinacy at a smaller real cost than tax debt-dependent policies.

- But this:
 - requires that, at some point in time, the CB sells a fraction of the acquired bonds
 - makes debt-to-GDP ratio more volatile: the ratio de-escalates quickly in the short-run but increases again in the medium-run when the CB sells government bonds
 - comes at a cost of higher inflation.
Possible extensions

- How the results would differentiate in an economy that does not participate in a currency union (i.e. when n_t could be negative)?
Possible extensions

- How the results would differentiate in an economy that does not participate in a currency union (i.e. when n_t could be negative)?
- What happens in a currency union with two asymmetric regions?
Possible extensions

- How the results would differentiate in an economy that does not participate in a currency union (i.e. when n_t could be negative)?
- What happens in a currency union with two asymmetric regions?

- Thank you for your attention
Budget constraint:

\[(1 + \tau_t^c) c_{h,t} + j_{h,t} + m_{h,t} = (1 - \tau_t^y) w_t l_{h,t} + (1 + i_t^d) \frac{p_{t-1}}{p_t} j_{h,t-1} + \frac{p_{t-1}}{p_t} m_{h,t-1} + \pi_{h,t} + g_t^t\]

Cash-in-advance constraint:

\[m_{h,t} \geq (1 + \tau_t^c) c_{h,t}\]
Final good firms

Standard Dixit-Stiglitz technology:

\[y_{f,t} = \left[\sum_{i=1}^{N} \frac{1}{N} (y_{i,t})^{\theta} \right]^{\frac{1}{\theta}} \]

Real profits:

\[\pi_{f,t} = y_{f,t} - \sum_{i=1}^{N} \frac{1}{N} \frac{p_{i,t}}{p_{t}} y_{i,t} \]
Intermediate good firms

Net profit:

\[\pi_{i,t} = (1 - \tau_{t}^{\pi}) \left[\frac{p_{i,t}}{p_{t}} y_{i,t} - w_{t} l_{i,t} \right] - x_{i,t} - \]

\[- \frac{\zeta^{p}}{2} \left(\frac{p_{i,t}}{p_{i,t-1}} - 1 \right)^{2} \bar{y}_{i,t} + \left(L_{i,t}^{h} - \left[1 + i_{t}^{l} (1 - \tau_{t}^{\pi}) \right] \frac{p_{t-1}}{p_{t}} L_{i,t-1}^{h} \right) \]

Production function:

\[y_{i,t} = A \left(k_{t-1}^{g} \right)^{\sigma} \left(k_{i,t-1}^{\alpha} l_{i,t}^{1-\alpha} \right)^{1-\sigma} \]
The law of motion of the firm’s capital stock:

\[k_{i,t} = x_{i,t} + (1 - \delta) k_{i,t-1} \]

Borrowing constraint:

\[L_{i,t} \geq \eta w_t l_{i,t} \]

Demand for product:

\[p_{i,t} = p_t \left(\frac{y_{i,t}}{y_{f,t}} \right)^{\theta-1} \]

private firms
Private banks

The budget constraint of each bank that connects changes in its assets and liabilities is:

$$\pi_{p,t} = (1 - \tau^\pi_t) \left[(1 + i^l_t) \frac{p_{t-1}}{p_t} L_{p,t-1} + (1 + i^r_t) \frac{p_{t-1}}{p_t} m_{p,t-1} + (1 + i^b_t) \frac{p_{t-1}}{p_t} \Lambda_t b_p + \right. $$

$$\Phi_t \frac{p_{t-1}}{p_t} (1 - \Lambda_t) b_{p,t-1} - (1 + i^d_t) \frac{p_{t-1}}{p_t} j_{p,t-1} - (1 + i^z_t) \frac{p_{t-1}}{p_t} z_{p,t-1} -$$

$$\Xi_t - L_{p,t} - b_{p,t} - m_{p,t} + j_{p,t} + z_{p,t}$$

where

$$\Xi_t = \frac{\xi^l}{2} (L_{p,t-1})^2 + \frac{\xi^b}{2} (\Lambda_t b_{p,t-1})^2 +$$

$$+ \frac{\xi^m}{2} (m_{p,t-1} + \Phi_t (1 - \Lambda_t) b_{p,t-1})^2 + \frac{\xi^z}{2} (z_{p,t-1})^2$$
The Government budget constraint

The flow budget constraint of the government written in per capita and real terms is:

\[g^c_t + g^g_t + g^t_t + (1 + i^b_t) \frac{p_{t-1}}{p_t} b_{t-1} = b_t + \frac{T_t}{N} + n_t \]

Total tax revenues in real terms are defined as:

\[\frac{T_t}{N} \equiv \tau^c_t c_{h,t} + \tau^y_t w_t l_{h,t} + \tau^\pi_t (y_{i,t} - w_t l_{i,t}) + \]

\[+ \tau^\pi_t (1 + i^l_t) \frac{p_{t-1}}{p_t} L_{p,t-1} + (1 + i^r_t) \frac{p_{t-1}}{p_t} m_{p,t-1} + \]

\[+ (1 + i^b_t) \frac{p_{t-1}}{p_t} \Lambda_t b_{p,t-1} + \Phi_t \frac{p_{t-1}}{p_t} (1 - \Lambda_t) b_{p,t-1} - \]

\[- (1 + i^d_t) \frac{p_{t-1}}{p_t} j_{p,t-1} - (1 + i^z_t) \frac{p_{t-1}}{p_t} z_{p,t-1} - \frac{p^h_t}{p_t} \Xi_t] \]
The budget constraint of the CB linking changes in assets and liabilities is (written in real and per capita terms):

$$
\Phi_t (1 - \Lambda_t) \frac{p_{t-1}}{p_t} b_{t-1} + z_{p,t} + i_t \frac{p_{t-1}}{p_t} m_{p,t-1} + n_t \equiv \\
\equiv (1 - \Lambda_t)(1 + i^b_t) \frac{p_{t-1}}{p_t} b_{t-1} + (1 + i^z_t) \frac{p_{t-1}}{p_t} z_{p,t-1} + m_t - \frac{p_{t-1}}{p_t} m_{t-1}
$$
Government investment
Government consumption
Consumption tax rate
Income tax rate
Profit tax rate