A general theory of tax-smoothing

Anastasios G. Karantounias

University of Surrey

CRETE 2022

Tinos, July 2022
The basic idea

• **Question**: should we tax today or should we *postpone* taxes and issue debt (\equiv *future* taxes)?
The basic idea

• **Question:** should we tax today or should we *postpone* taxes and issue debt (≡ *future* taxes)?

• What matters for this *trade-off*? the price of government debt.
The basic idea

• **Question:** should we tax today or should we *postpone* taxes and issue debt (≡ *future* taxes)?

• What matters for this *trade-off?* the price of government debt.

• **This paper:** Build a *general* theory of optimal fiscal policy around the following “*tax-smoothing*” *principle*:

\[
\begin{align*}
\text{Future taxes} & = \Phi \times \text{Marginal Revenue} \\
\text{MC of debt} & \quad \text{MB of debt}
\end{align*}
\]

• **Optimality condition wrt to (some measure of) debt.**
 • *LHS:* MC of issuing more debt: *costly* due to *more* taxes tomorrow.
 • *RHS:* Marginal revenue of new *debt issuance* × *social value* of relaxing the government budget.
The basic idea

- **Question:** should we tax today or should we *postpone* taxes and issue debt (≡ future taxes)?

- What matters for this *trade-off*? the price of government debt.

- **This paper:** Build a *general* theory of optimal fiscal policy around the following "tax-smoothing" principle:

\[
\text{Future taxes} \propto \Phi \times \left[p + \left(\frac{\partial p}{\partial b'} \cdot b'\right)\right]
\]

(1)

- Optimality condition wrt to (some measure of) debt.
 - **LHS:** MC of issuing more debt: costly due to more taxes tomorrow.
 - **RHS:** Marginal revenue of new debt issuance × social value of relaxing the government budget.
The basic idea

- **Question**: should we tax today or should we *postpone* taxes and issue debt (≡ future taxes)?

- **What matters for this trade-off?** the price of government debt.

- **This paper**: Build a *general* theory of optimal fiscal policy around the following “*tax-smoothing*” principle:

\[
\text{Future taxes} \propto \Phi \times [p + \frac{\partial p}{\partial b'} \cdot b']
\]

(1)

- **Optimality condition wrt to (some measure of) debt.**
 - **LHS**: MC of issuing more debt: costly due to more taxes tomorrow.
 - **RHS**: Marginal revenue of new debt issuance × social value of relaxing the government budget.

- **Principle**: Levy more taxes on states/dates if MR of debt is high

⇒ *Tax more tomorrow vs today if it is cheaper to issue debt!*
Asset prices matter!

- **Market value** of the government debt portfolio depends on:
 1. Stochastic Discount Factor (e.g. time-additive or recursive utility).
 2. Market structure (complete or incomplete markets).
 3. Timing protocol (commitment versus discretion).

- What I do: Take asset prices seriously.

- Use a plausible model of asset returns ⇒ (Generalized) recursive utility.

- Market structure: consider complete or incomplete markets.

- Timing prot.: commitment for the presentation (for discretion see paper)

- The MR is activated with recursive utility.

- The same principle Taxes = \Phi \times MR emerges in each environment \implies tax-smoothing!
Asset prices matter!

- Market value of the government debt portfolio depends on:
 1. Stochastic Discount Factor (e.g. *time-additive* or *recursive* utility).

• What I do: Take asset prices seriously.
• Use a plausible model of asset returns \(\Rightarrow \) (Generalized) recursive utility.
• Market structure: consider complete or incomplete markets.
• Timing prot.: commitment for the presentation (for discretion see paper)
• The MR is activated with recursive utility.
• The same principle \(\text{Taxes} = \Phi \times \text{MR} \) emerges in each environment \(\Rightarrow \) tax-smoothing!
Asset prices matter!

- **Market value** of the government debt portfolio depends on:
 1. Stochastic Discount Factor (e.g. *time-additive* or *recursive* utility).
 2. Market structure (*complete* or *incomplete* markets).

- The MR is activated with recursive utility.
- The same principle *Taxes = Φ × MR* emerges in each environment ⟷ tax-smoothing!

- Related literature
Asset prices matter!

- **Market value** of the government debt portfolio depends on:
 1. **Stochastic Discount Factor** (e.g. *time-additive* or *recursive* utility).
 2. **Market structure** (*complete* or *incomplete* markets).
 3. **Timing protocol** (*commitment* versus *discretion*).
Asset prices matter!

- **Market value** of the government debt portfolio depends on:
 1. Stochastic Discount Factor (e.g. *time-additive* or *recursive* utility).
 2. Market structure (*complete* or *incomplete* markets).
 3. Timing protocol (*commitment* versus *discretion*).

- **What I do**: Take *asset prices* seriously.
Asset prices matter!

• Market value of the government debt portfolio depends on:
 1. Stochastic Discount Factor (e.g. time-additive or recursive utility).
 2. Market structure (complete or incomplete markets).
 3. Timing protocol (commitment versus discretion).

• What I do: Take asset prices seriously.
 • Use a plausible model of asset returns ⇒ (Generalized) recursive utility.
Asset prices matter!

- **Market value** of the government debt portfolio depends on:
 1. Stochastic Discount Factor (e.g. *time-additive* or *recursive* utility).
 2. Market structure (*complete* or *incomplete* markets).
 3. Timing protocol (*commitment* versus *discretion*).

- **What I do**: Take *asset prices* seriously.
 - Use a *plausible* model of *asset returns* ⇒ (Generalized) *recursive* utility.
 - Market structure: consider *complete* or *incomplete* markets.
Asset prices matter!

- **Market value** of the government debt portfolio depends on:
 1. **Stochastic Discount Factor** (e.g. *time-additive* or *recursive* utility).
 2. **Market structure** (*complete* or *incomplete* markets).
 3. **Timing protocol** (*commitment* versus *discretion*).

- **What I do**: Take *asset prices* seriously.
 - Use a *plausible* model of *asset returns* \Rightarrow (Generalized) *recursive* utility.
 - **Market structure**: consider *complete* or *incomplete* markets.
 - **Timing prot.**: *commitment* for the presentation (for *discretion* see paper)
Asset prices matter!

- **Market value** of the government debt portfolio depends on:
 1. Stochastic Discount Factor (e.g. time-additive or recursive utility).
 2. Market structure (complete or incomplete markets).
 3. Timing protocol (commitment versus discretion).

- **What I do**: Take *asset prices* seriously.
 - Use a *plausible* model of *asset returns* ⇒ (Generalized) recursive utility.
 - Market structure: consider *complete* or *incomplete* markets.
 - Timing prot.: *commitment* for the presentation (for discretion see paper)

- The MR is *activated* with recursive utility.
Asset prices matter!

- Market value of the government debt portfolio depends on:
 1. Stochastic Discount Factor (e.g. time-additive or recursive utility).
 2. Market structure (complete or incomplete markets).
 3. Timing protocol (commitment versus discretion).

- What I do: Take asset prices seriously.
 - Use a plausible model of asset returns ⇒ (Generalized) recursive utility.
 - Market structure: consider complete or incomplete markets.
 - Timing prot.: commitment for the presentation (for discretion see paper)

- The MR is activated with recursive utility.

- The same principle Taxes = Φ × MR emerges in each environment ⇒ tax-smoothing!
Asset prices matter!

- **Market value** of the government debt portfolio depends on:
 1. Stochastic Discount Factor (e.g. *time-additive* or *recursive* utility).
 2. Market structure (*complete* or *incomplete* markets).
 3. Timing protocol (*commitment* versus *discretion*).

- **What I do**: Take *asset prices* seriously.
 - Use a *plausible* model of *asset returns* ⇒ *(Generalized)* *recursive* utility.
 - Market structure: consider *complete* or *incomplete* markets.
 - Timing prot.: *commitment* for the presentation (for *discretion* see paper)

- The MR is *activated* with recursive utility.

- The *same* principle *Taxes* = $\Phi \times MR$ emerges in *each* environment ⇒ *tax-smoothing*!

- ← Related literature
Preview of results

Complete markets

• Time-additive utility: Lucas and Stokey (1983)
• Keep labor tax essentially constant ⇒ tax-smoothing.
• No drifts.
• No endogenous persistence.
• Recursive utility.
• Taxes are not constant ⇒ tax more in good times and less in bad times.
• Back-loading of distortions.
• High endogenous persistence.

Incomplete markets

• Time-additive utility: Barro (1979) and Aiyagari et al. (2002)
• “Averaging” of distortions (taxes are random walks)
• Tax more in bad times and less in good times.
• Recursive utility.
• Random-walk results break down (no “averaging”).
• Tax even more in bad times and even less in good times.
Preview of results

Complete markets

- Time-additive utility: Lucas and Stokey (1983)
Preview of results

Complete markets

• **Time-additive utility**: Lucas and Stokey (1983)

 • Keep labor tax essentially *constant* ⇒ *tax-smoothing*.

• **No drifts.**

• **No endogenous persistence.**

• **Recursive utility.**

• Taxes are not constant ⇒ tax more in good times and less in bad times.

• **Back-loading of distortions.**

• High endogenous persistence.

Incomplete markets

• **Time-additive utility**: Barro (1979) and Aiyagari et al. (2002)

 • "Averaging" of distortions (taxes are random walks)

 • Tax more in bad times and less in good times.

• **Recursive utility.**

• Random-walk results break down (no "averaging").

• Tax even more in bad times and even less in good times.
Preview of results

Complete markets

- **Time-additive utility**: Lucas and Stokey (1983)
 - Keep labor tax essentially *constant* \Rightarrow *tax-smoothing*.
 - No drifts.

Incomplete markets

- **Time-additive utility**: Barro (1979) and Aiyagari et al. (2002)
 - "Averaging" of distortions (taxes are random walks)
 - Tax more in bad times and less in good times.
 - Recursive utility.
 - Random-walk results break down (no "averaging").
 - Tax even more in bad times and even less in good times.
Complete markets

- Time-additive utility: Lucas and Stokey (1983)
 - Keep labor tax essentially \textit{constant} \Rightarrow \textit{tax-smoothing}.
 - No drifts.
 - No \textit{endogenous} persistence.

Incomplete markets

- Time-additive utility: Barro (1979) and Aiyagari et al. (2002)
 - "Averaging" of distortions (taxes are random walks)
 - Tax more in bad times and less in good times.
 - Recursive utility.
 - Random-walk results break down (no "averaging").
 - Tax even more in bad times and even less in good times.
Preview of results

Complete markets

- **Time-additive utility:** Lucas and Stokey (1983)
 - Keep labor tax essentially *constant* ⇒ *tax-smoothing*.
 - No drifts.
 - No *endogenous* persistence.
- **Recursive utility.**
 - Taxes are *not* constant ⇒ tax *more* in good times and *less* in bad times.

Incomplete markets

- **Time-additive utility:** Barro (1979) and Aiyagari et al. (2002)
 - "Averaging" of distortions (taxes are random walks)
 - Tax *more* in bad times and *less* in good times.
- **Recursive utility.**
 - Random-walk results break down (no "averaging").
 - Tax even *more* in bad times and *even less* in good times.
Preview of results

Complete markets

- **Time-additive utility**: Lucas and Stokey (1983)
 - Keep labor tax essentially *constant* ⇒ *tax-smoothing*.
 - No drifts.
 - No *endogenous* persistence.

- **Recursive utility**.
 - Taxes are not constant ⇒ tax *more* in good times and *less* in bad times.
 - *Back-loading* of distortions.
Preview of results

Complete markets

- **Time-additive utility**: Lucas and Stokey (1983)
 - Keep labor tax essentially *constant* ⇒ *tax-smoothing*.
 - No drifts.
 - No *endogenous* persistence.
- **Recursive utility**.
 - Taxes are not constant ⇒ tax *more* in good times and *less* in bad times.
 - *Back-loading* of distortions.
 - High *endogenous* persistence.

Incomplete markets

- **Time-additive utility**: Barro (1979) and Aiyagari et al. (2002)
 - "Averaging" of distortions (taxes are random walks)
 - Tax *more* in bad times and *less* in good times.
 - Recursive utility.
 - Random-walk results break down (no "averaging").
 - Tax even more in bad times and even *less* in good times.
Preview of results

Complete markets

- **Time-additive utility**: Lucas and Stokey (1983)
 - Keep labor tax essentially *constant* ⇒ *tax-smoothing*.
 - No drifts.
 - No *endogenous* persistence.
- **Recursive utility**.
 - Taxes are *not* constant ⇒ tax *more* in good times and *less* in bad times.
 - *Back-loading* of distortions.
 - High *endogenous* persistence.

Incomplete markets
Preview of results

Complete markets

- **Time-additive utility:** Lucas and Stokey (1983)
 - Keep labor tax essentially constant ⇒ **tax-smoothing**.
 - No drifts.
 - No *endogenous* persistence.
- **Recursive utility.**
 - Taxes are not constant ⇒ tax *more* in good times and *less* in bad times.
 - *Back-loading* of distortions.
 - High *endogenous* persistence.

Incomplete markets

- **Time-additive utility:** Barro (1979) and Aiyagari et al. (2002)
 - “*Averaging*” of distortions (taxes are *random walks*)
Preview of results

Complete markets

- **Time-additive utility**: Lucas and Stokey (1983)
 - Keep labor tax essentially *constant* ⇒ *tax-smoothing*.
 - No drifts.
 - No *endogenous* persistence.
- **Recursive utility**.
 - Taxes are *not* constant ⇒ tax *more* in good times and *less* in bad times.
 - *Back-loading* of distortions.
 - High *endogenous* persistence.

Incomplete markets

- **Time-additive utility**: Barro (1979) and Aiyagari et al. (2002)
 - “*Averaging*” of distortions (taxes are *random walks*)
 - Tax *more* in bad times and *less* in good times.
Preview of results

Complete markets

• **Time-additive utility:** Lucas and Stokey (1983)
 - Keep labor tax essentially *constant* ⇒ *tax-smoothing*.
 - No drifts.
 - No *endogenous* persistence.

• **Recursive utility.**
 - Taxes are *not* constant ⇒ tax *more* in good times and *less* in bad times.
 - *Back-loading* of distortions.
 - High *endogenous* persistence.

Incomplete markets

• **Time-additive utility:** Barro (1979) and Aiyagari et al. (2002)
 - “Averaging” of distortions (taxes are *random walks*)
 - Tax *more* in bad times and *less* in good times.

• **Recursive utility.**
Preview of results

Complete markets

• **Time-additive utility**: Lucas and Stokey (1983)
 • Keep labor tax essentially *constant* ⇒ *tax-smoothing*.
 • No drifts.
 • No *endogenous* persistence.

• **Recursive utility**.
 • Taxes are **not** constant ⇒ tax *more* in good times and *less* in bad times.
 • *Back-loading* of distortions.
 • High *endogenous* persistence.

Incomplete markets

• **Time-additive utility**: Barro (1979) and Aiyagari et al. (2002)
 • “Averaging” of distortions (taxes are *random walks*)
 • Tax *more* in bad times and *less* in good times.

• **Recursive utility**.
 • Random-walk results break down (no “averaging”).
Preview of results

Complete markets

- **Time-additive utility**: Lucas and Stokey (1983)
 - Keep labor tax essentially *constant* ⇒ *tax-smoothing*.
 - No drifts.
 - No *endogenous* persistence.
- **Recursive utility**.
 - Taxes are not constant ⇒ tax *more* in good times and *less* in bad times.
 - *Back-loading* of distortions.
 - High *endogenous* persistence.

Incomplete markets

- **Time-additive utility**: Barro (1979) and Aiyagari et al. (2002)
 - “*Averaging*” of distortions (taxes are random walks)
 - Tax *more* in bad times and *less* in good times.
- **Recursive utility**.
 - Random-walk results break down (no “*averaging*”).
 - Tax *even more* in bad times and *even less* in good times.
Economy

- Economy without capital and exogenous and stochastic g_t (TFP shocks can be easily incorporated)

$$c_t(g^t) + g_t = h_t(g^t)$$
Economy

- Economy without capital and exogenous and stochastic \(g_t \) (TFP shocks can be easily incorporated)

\[
c_t(g^t) + g_t = h_t(g^t)
\]

- Two market structures:

\[
b_t(g^t) = \tau_t(g^t)w_t(g^t)h_t(g^t) - g_t + \sum_{g_{t+1}} p_t(g_{t+1}, g^t)b_{t+1}(g^{t+1})
\]

 - **primary surplus**
 - **portfolio of new debt**
Economy

- Economy without capital and exogenous and stochastic g_t (TFP shocks can be easily incorporated)

$$c_t(g^t) + g_t = h_t(g^t)$$

- Two market structures:

$$b_t(g^t) = \tau_t(g^t)w_t(g^t)h_t(g^t) - g_t + \sum_{g_{t+1}} p_t(g_{t+1}, g^t) b_{t+1}(g^{t+1})$$

 - primary surplus
 - portfolio of new debt

 2. Non-contingent debt as in Aiyagari et al. (2002):

$$b_{t-1}(g^{t-1}) = \tau_t(g^t)w_t(g^t)h_t(g^t) - g_t + q_t(g^t)b_t(g^t)$$
Preferences

- *General* form of recursive utility (Kreps and Porteus (1978)):

\[V_t = u(c_t, 1-h_t) + \beta H^{-1}(E_t H(V_{t+1})) \]

Certainty equivalent \(\mu_t \)

- \(H \) increasing and *concave* \(\Rightarrow \) aversion towards risks in \(V_{t+1} \).

- \(A(x) \equiv -H''/H' \) coefficient of *absolute* risk aversion.

- Time-additive utility: \(H(x) = x \).
Preferences

• *General* form of recursive utility (Kreps and Porteus (1978)):

\[
V_t = u(c_t, 1 - h_t) + \beta H^{-1}(E_t H(V_{t+1}))
\]

Certainty equivalent \(\mu_t \)

• \(H \) increasing and *concave* \(\Rightarrow \) aversion towards risks in \(V_{t+1} \).

• \(A(x) \equiv -H''/H' \) coefficient of *absolute* risk aversion.

• *Time-additive utility:* \(H(x) = x \).

• Three *parametric* examples:
Preferences

• General form of recursive utility (Kreps and Porteus (1978)):

\[V_t = u(c_t, 1 - h_t) + \beta \left(H^{-1}(E_t H(V_{t+1})) \right) \]

Certainty equivalent \(\mu_t \)

• \(H \) increasing and concave \(\Rightarrow \) aversion towards risks in \(V_{t+1} \).

• \(A(x) \equiv -H''/H' \) coefficient of absolute risk aversion.

• Time-additive utility: \(H(x) = x \).

• Three parametric examples:
 1. Constant absolute risk aversion: \(H(x) = \frac{\exp(-A x)}{-A} \), \(A > 0 \).
Preferences

- **General** form of recursive utility (Kreps and Porteus (1978)):

\[
V_t = u(c_t, 1 - h_t) + \beta H^{-1}(E_t H(V_{t+1}))
\]

Certainty equivalent \(\mu_t \)

- \(H \) increasing and concave \(\Rightarrow \) aversion towards risks in \(V_{t+1} \).

- \(A(x) \equiv -H''/H' \) coefficient of **absolute** risk aversion.

- **Time-additive utility**: \(H(x) = x \).

- Three parametric examples:
 1. **Constant absolute** risk aversion: \(H(x) = \frac{\exp(-Ax)}{-A} \), \(A > 0 \).
 2. **Constant relative** risk aversion: \(H(x) = \frac{x^{1-\alpha}-1}{1-\alpha} \), \(\alpha \neq 1, \alpha, u > 0 \).

Preferences

- General form of recursive utility (Kreps and Porteus (1978)):

\[V_t = u(c_t, 1 - h_t) + \beta \, H^{-1}(E_t H(V_{t+1})) \]

Certainty equivalent \(\mu_t \)

- \(H \) increasing and concave \(\Rightarrow \) aversion towards risks in \(V_{t+1} \).

- \(A(x) \equiv -H''/H' \) coefficient of absolute risk aversion.

- Time-additive utility: \(H(x) = x \).

- Three parametric examples:
 1. Constant absolute risk aversion: \(H(x) = \frac{\exp(-Ax)}{-A}, A > 0 \).
 2. Constant relative risk aversion: \(H(x) = \frac{x^{1-\alpha}-1}{1-\alpha}, \alpha \neq 1, \alpha, u > 0 \).
 3. Logarithmic case, \(\alpha = 1 \): \(H(x) = \ln x \).

Preferences

• General form of recursive utility (Kreps and Porteus (1978)):

\[V_t = u(c_t, 1 - h_t) + \beta \frac{H^{-1}(E_t H(V_{t+1}))}{\text{Certainty equivalent } \mu_t} \]

• \(H \) increasing and concave \(\Rightarrow \) aversion towards risks in \(V_{t+1} \).

• \(A(x) \equiv -H''/H' \) coefficient of absolute risk aversion.

• Time-additive utility: \(H(x) = x \).

• Three parametric examples:
 1. Constant absolute risk aversion: \(H(x) = \frac{\exp(-Ax)}{-A}, A > 0 \).
 2. Constant relative risk aversion: \(H(x) = \frac{x^{1-\alpha-1}}{1-\alpha}, \alpha \neq 1, \alpha, u > 0 \).
 3. Logarithmic case, \(\alpha = 1 \): \(H(x) = \ln x \).

Stochastic Discount Factor

- Two components: Consumption (*short-run*) risk vs Continuation value risk (*long-run*):

\[S_{t+1} = \beta \frac{u_{c,t+1}}{u_{ct}} \frac{H'(V_{t+1})}{H'(\mu_t)} \equiv m_{t+1} \]
Stochastic Discount Factor

- Two components: Consumption (short-run) risk vs Continuation value risk (long-run):

$$S_{t+1} = \beta \frac{u_{c,t+1}}{u_{ct}} \frac{H'(V_{t+1})}{H' (\mu_t)} \equiv m_{t+1}$$

- Agent dislikes volatility in utility ⇒ $V_{t+1} \downarrow \Rightarrow$ SDF \uparrow.
Stochastic Discount Factor

- Two components: Consumption (*short-run*) risk vs Continuation value risk (*long-run*):

\[S_{t+1} = \beta \frac{u_{c,t+1}}{u_{ct}} \frac{H'(V_{t+1})}{H'(\mu_t)} \equiv m_{t+1} \]

- Agent *dislikes* volatility in utility ⇒ \(V_{t+1} \downarrow \Rightarrow SDF \uparrow \).

- Exponential CE:

\[m_{t+1} = \frac{\exp(-AV_{t+1})}{E_t \exp(-AV_{t+1})}, E_t m_{t+1} = 1 \]
Stochastic Discount Factor

- Two components: Consumption (short-run) risk vs Continuation value risk (long-run):

\[
S_{t+1} = \beta \frac{u_{c,t+1}}{u_{ct}} \frac{H'(V_{t+1})}{H'(\mu_t)} \equiv m_{t+1}
\]

- Agent dislikes volatility in utility \(\Rightarrow V_{t+1} \downarrow \Rightarrow SDF \uparrow \).

- Exponential CE:

\[
m_{t+1} = \frac{\exp(-AV_{t+1})}{E_t \exp(-AV_{t+1})}, E_t m_{t+1} = 1
\]

- Power CE (\(\alpha \neq 1 \)):

\[
m_{t+1} = \left(\frac{V_{t+1}}{\mu_t} \right)^{-\alpha} = \kappa_{t+1}^{-\frac{\alpha}{1-\alpha}}, \text{ where } \kappa_{t+1} \equiv \frac{V_{t+1}^{1-\alpha}}{E_t V_{t+1}^{1-\alpha}}, E_t \kappa_{t+1} = 1
\]
Stochastic Discount Factor

- **Two components:** Consumption (*short-run*) risk vs Continuation value risk (*long-run*):

\[
S_{t+1} = \beta \frac{u_{c,t+1}}{u_{ct}} \frac{H'(V_{t+1})}{H'(\mu_t)} \equiv m_{t+1}
\]

- Agent *dislikes* volatility in utility \(\Rightarrow V_{t+1} \downarrow \Rightarrow SDF \uparrow \).
- **Exponential CE:**

\[
m_{t+1} = \frac{\exp(-AV_{t+1})}{E_t \exp(-AV_{t+1})}, E_t m_{t+1} = 1
\]

- **Power CE \((\alpha \neq 1)\):**

\[
m_{t+1} = \left(\frac{V_{t+1}}{\mu_t} \right)^{-\alpha} = \kappa_{t+1}^{-\frac{\alpha}{1-\alpha}}, \text{ where } \kappa_{t+1} \equiv \frac{V_{t+1}^{1-\alpha}}{E_t V_{t+1}^{1-\alpha}}, E_t \kappa_{t+1} = 1
\]

- **Logarithmic CE:**

\[
m_{t+1} = \exp\left(-\left(v_{t+1} - E_t v_{t+1}\right)\right), \quad v_{t+1} \equiv \ln V_{t+1}, E_t \ln m_{t+1} = 1.
\]
Optimal policy under commitment

- Distortionary taxation:

\[
\frac{u_{lt}}{u_{ct}} = (1 - \tau_t)w_t
\]

- **Optimal policy problem**: choose \(\tau \) to maximize the utility of the representative household at \(t = 0 \).

- Formulate commitment problem recursively as in Kydland and Prescott (1980).

- **Important**: \(V_t \) shows up in the implementability constraints due to recursive utility.

- State variables
 - **Complete markets**: \(z_t \equiv u_{ct}b_t \), debt in MU units.
 - **Incomplete markets**: \(B_t \equiv E_t m_{t+1} u_{c,t+1} \cdot b_t \), debt in average MU units.

- Value function with **complete** markets:

 - Value function with **incomplete** markets:

- \(\Phi_t \) : excess burden (multiplier on implementability constraint) \(\Rightarrow \) Captures taxes.
Recursive utility: price effect of continuation values

• Let $g_L < g_H$. Planner *insures* ex-ante:

 • *sells* debt against $g_L \Rightarrow$ to be paid with a *surplus* when $g' = g_L$

 • *buys* assets against $g_H \Rightarrow$ finances a *deficit* when $g' = g_H$.

Recursive utility: price effect of continuation values

• Let $g_L < g_H$. Planner *insures* ex-ante:
 • *sells* debt against $g_L \Rightarrow$ to be paid with a *surplus* when $g' = g_L$
 • *buys* assets against $g_H \Rightarrow$ finances a *deficit* when $g' = g_H$.

• *How much debt/assets?*
 • Expected utility: Make tax rate *constant* across $g_i, i = L, H$.
Recursive utility: price effect of continuation values

• Let $g_L < g_H$. Planner *insures* ex-ante:
 • *sells* debt against $g_L \Rightarrow$ to be paid with a *surplus* when $g' = g_L$
 • *buys* assets against $g_H \Rightarrow$ finances a *deficit* when $g' = g_H$.

• *How much debt/assets?*
 • *Expected utility*: Make tax rate *constant* across $g_i, i = L, H$.
 • *Recursive utility*: Planner *over-insures*:
 • Sells *more* debt against g_L and *increase* taxes when $g' = g_L$
 • Buys *more* assets against g_H and *decrease* taxes when $g' = g_H$.
Recursive utility: price effect of continuation values

• Let \(g_L < g_H \). Planner insures ex-ante:
 • sells debt against \(g_L \) ⇒ to be paid with a surplus when \(g' = g_L \)
 • buys assets against \(g_H \) ⇒ finances a deficit when \(g' = g_H \).

• How much debt/assets?
 • Expected utility: Make tax rate constant across \(g_i, i = L, H \).
 • Recursive utility: Planner over-insures:
 • Sells more debt against \(g_L \) and increase taxes when \(g' = g_L \)
 • Buys more assets against \(g_H \) and decrease taxes when \(g' = g_H \).

• Why? \(Debt_L \uparrow \Rightarrow V_L \downarrow \Rightarrow SDF_L \uparrow \): price of claims sold \(\uparrow \).
 • Tax more at \(g_L \) since it becomes cheaper to issue debt against \(g_L \).
 • Tax less at \(g_H \) because assets against \(g_H \) become more profitable \((SDF_H \downarrow)\).
Excess burden with complete markets I

- Optimality condition wrt $z_{t+1} \equiv u_{c,t+1}b_{t+1}$.

$\eta_{t+1} \equiv A(V_{t+1}z_{t+1})$ adjusted by $A(x) \equiv -A''/A'$.

$\eta_{t+1} \equiv 0$ for time-additive utility (or for the deterministic case).
Excess burden with complete markets I

• **Time-additive utility**: Lucas and Stokey (1983)

\[
\Phi_{t+1} = \Phi_t \cdot 1, \forall t, s^t
\]

• MR part **trivial** ⇒ keep distortions **constant** over states and dates ("tax-smoothing").

\[
\Phi_t = \Phi_{t+1} = \Phi_{t+1} \cdot 1, \forall t, s^t
\]
Excess burden with complete markets I

- Recursive utility:

\[\frac{1}{\Phi_{t+1}} = \frac{1}{\Phi_t} - \eta_{t+1} \]
Excess burden with complete markets I

- Recursive utility:

\[
\frac{1}{\Phi_{t+1}} = \frac{1}{\Phi_t} - \eta_{t+1}
\]

- \(\eta_{t+1}\): relative debt in MU units adjusted by \(A(x) \equiv -A''/A'\).

\[
\eta_{t+1} \equiv A(V_{t+1})z_{t+1} - A(\mu_t) E_t m_{t+1} z_{t+1}
\]

“debt” value of portfolio
Excess burden with complete markets I

• Recursive utility:

\[\frac{1}{\Phi_{t+1}} = \frac{1}{\Phi_t} - \eta_{t+1} \]

• \(\eta_{t+1} \): relative debt in MU units adjusted by \(A(x) \equiv -A''/A' \).

\[\eta_{t+1} \equiv A(V_{t+1})z_{t+1} - A(\mu_t) \begin{cases}
E_{tm_{t+1}}z_{t+1} \text{ \text{value of portfolio}} \end{cases} \]

• \(\eta_{t+1} \equiv 0 \) for time-additive utility (or for the deterministic case).
Excess burden with complete markets II

- **LoM** in terms of inverse excess burden of taxation

\[
\frac{1}{\Phi_{t+1}} = \frac{1}{\Phi_t} - \eta_{t+1}
\]

- Tax *more* tomorrow vs today \((\Phi_{t+1}(g') > \Phi_t)\) when issue relatively more debt \((\eta_{t+1}(g') > 0)\).
- Tax *less* tomorrow vs today \((\Phi_{t+1}(g') < \Phi_t)\) when issue relatively less debt \((\eta_{t+1}(g') < 0)\).

• parametric examples, persistence and drifts
• optimal tax rate
• numerical exercises
Excess burden with complete markets II

- LoM in terms of inverse excess burden of taxation

\[
\frac{1}{\Phi_{t+1}} = \frac{1}{\Phi_t} - \eta_{t+1}
\]

- Tax more tomorrow vs today \((\Phi_{t+1}(g') > \Phi_t)\) when issue relatively more debt \((\eta_{t+1}(g') > 0)\).

- Tax less tomorrow vs today \((\Phi_{t+1}(g') < \Phi_t)\) when issue relatively less debt \((\eta_{t+1}(g') < 0)\).

- Expect \(\eta_{t+1}(g_L) > 0 > \eta_{t+1}(g_H)\) due to fiscal hedging (issue more debt against good times) \(\Rightarrow \Phi_{t+1}(g_L) > \Phi_t > \Phi_{t+1}(g_H)\).
Excess burden with complete markets II

- LoM in terms of inverse excess burden of taxation

\[\frac{1}{\Phi_{t+1}} = \frac{1}{\Phi_t} - \eta_{t+1} \]

- Tax more tomorrow vs today \((\Phi_{t+1}(g') > \Phi_t)\) when issue relatively more debt \((\eta_{t+1}(g') > 0)\).

- Tax less tomorrow vs today \((\Phi_{t+1}(g') < \Phi_t)\) when issue relatively less debt \((\eta_{t+1}(g') < 0)\).

- Expect \(\eta_{t+1}(g_L) > 0 > \eta_{t+1}(g_H)\) due to fiscal hedging (issue more debt against good times) \(\Rightarrow \Phi_{t+1}(g_L) > \Phi_t > \Phi_{t+1}(g_H)\).

- \(\Rightarrow\) Tax more in good times and less in bad times \(\Rightarrow\) amplify Lucas and Stokey (1983).
Excess burden with complete markets II

- **LoM** in terms of inverse excess burden of taxation

\[
\frac{1}{\Phi_{t+1}} = \frac{1}{\Phi_t} - \eta_{t+1}
\]

- Tax *more* tomorrow vs today \((\Phi_{t+1}(g') > \Phi_t)\) when issue relatively more debt \((\eta_{t+1}(g') > 0)\).

- Tax *less* tomorrow vs today \((\Phi_{t+1}(g') < \Phi_t)\) when issue relatively less debt \((\eta_{t+1}(g') < 0)\).

- Expect \(\eta_{t+1}(g_L) > 0 > \eta_{t+1}(g_H)\) due to *fiscal hedging* (issue more debt against good times) \(\Rightarrow \Phi_{t+1}(g_L) > \Phi_t > \Phi_{t+1}(g_H)\).

\(\Rightarrow\) *Tax more in good times and less in bad times ⇒ amplify Lucas and Stokey (1983).*

\(\Rightarrow\) run larger surpluses in good times and larger deficits in bad times.
Excess burden with complete markets II

• LoM in terms of inverse excess burden of taxation

\[
\frac{1}{\Phi_{t+1}} = \frac{1}{\Phi_t} - \eta_{t+1}
\]

• Tax more tomorrow vs today \((\Phi_{t+1}(g') > \Phi_t)\) when issue relatively more debt \((\eta_{t+1}(g') > 0)\).

• Tax less tomorrow vs today \((\Phi_{t+1}(g') < \Phi_t)\) when issue relatively less debt \((\eta_{t+1}(g') < 0)\).

• Expect \(\eta_{t+1}(gL) > 0 > \eta_{t+1}(gH)\) due to fiscal hedging (issue more debt against good times) \(\Rightarrow \Phi_{t+1}(gL) > \Phi_t > \Phi_{t+1}(gH)\).

• \(\Rightarrow\) Tax more in good times and less in bad times \(\Rightarrow\) amplify Lucas and Stokey (1983).

• \(\Rightarrow\) run larger surpluses in good times and larger deficits in bad times.

• parametric examples, persistence and drifts
Excess burden with complete markets II

- **LoM** in terms of inverse excess burden of taxation

\[
\frac{1}{\Phi_{t+1}} = \frac{1}{\Phi_t} - \eta_{t+1}
\]

- Tax more tomorrow vs today \((\Phi_{t+1}(g') > \Phi_t)\) when issue relatively more debt \((\eta_{t+1}(g') > 0)\).

- Tax less tomorrow vs today \((\Phi_{t+1}(g') < \Phi_t)\) when issue relatively less debt \((\eta_{t+1}(g') < 0)\).

- Expect \(\eta_{t+1}(g_L) > 0 > \eta_{t+1}(g_H)\) due to fiscal hedging (issue more debt against good times) \(\Rightarrow \Phi_{t+1}(g_L) > \Phi_t > \Phi_{t+1}(g_H)\).

\(\Rightarrow\) Tax more in good times and less in bad times \(\Rightarrow\) amplify Lucas and Stokey (1983).

- \(\Rightarrow\) run larger surpluses in good times and larger deficits in bad times.

- **parametric examples, persistence and drifts**

- **optimal tax rate** **numerical exercises**
What happens with incomplete markets?

- Debt *non-contingent* \Rightarrow less room for manipulation of SDF?

 - Let $g_L < g_H$. Planner issues non-contingent debt:
 - In good times, $g'_L = g_L$, the planner will tax less to repay debt and finance g_L.
 - In bad times, $g'_H = g_H$, the planner will have to tax more to repay debt and finance g_H.
 - How much non-contingent debt does the planner issue?
 - Expected utility: Make tax rate on average constant across $g_i, i = L, H$.
 - Recursive utility:
 - Is there a counter-acting force (tax more in good times and less in bad times)? NO.
 - Price manipulation: Use continuation values to make the average SDF (inverse of interest rate) large.
 - Result: put more tax distortions on events with high $u_c \Rightarrow$ tax even more bad times with high u_c.
What happens with incomplete markets?

- Debt *non-contingent* ⇒ less room for manipulation of SDF?
- Let $g_L < g_H$. Planner issues *non-contingent* debt:
What happens with incomplete markets?

• Debt *non-contingent* ⇒ less room for manipulation of SDF?

• Let \(g_L < g_H \). Planner issues *non-contingent* debt:
 • In good times, \(g' = g_L \), the planner will tax *less* to repay debt and finance \(g_L \).
What happens with incomplete markets?

• Debt *non-contingent* ⇒ less room for manipulation of SDF?

• Let $g_L < g_H$. Planner issues *non-contingent* debt:
 - In good times, $g' = g_L$, the planner will tax *less* to repay debt and finance g_L.
 - In bad times, $g' = g_H$, the planner will have to tax *more* to repay debt and finance g_H.

• How much non-contingent debt does the planner issue?

• Expected utility: Make tax rate on average constant across $g_i, i = L, H$.

• Recursive utility:
 - Is there a counter-acting force (tax more in good times and less in bad times)? NO.
 - Price manipulation: Use continuation values to make the average SDF (inverse of interest rate) large.

• Result: put more tax distortions on events with high u_c ⇒ tax even more bad times with high u_c.

What happens with incomplete markets?

• Debt non-contingent ⇒ less room for manipulation of SDF?

• Let $g_L < g_H$. Planner issues non-contingent debt:
 • In good times, $g' = g_L$, the planner will tax less to repay debt and finance g_L.
 • In bad times, $g' = g_H$, the planner will have to tax more to repay debt and finance g_H.

• How much non-contingent debt does the planner issue?
 • Expected utility: Make tax rate on average constant across $g_i, i = L, H$.

What happens with incomplete markets?

• Debt non-contingent ⇒ less room for manipulation of SDF?

• Let $g_L < g_H$. Planner issues non-contingent debt:
 • In good times, $g' = g_L$, the planner will tax less to repay debt and finance g_L.
 • In bad times, $g' = g_H$, the planner will have to tax more to repay debt and finance g_H.

• How much non-contingent debt does the planner issue?
 • Expected utility: Make tax rate on average constant across $g_i, i = L, H$.
 • Recursive utility:
 • Is there a counter-acting force (tax more in good times and less in bad times)? NO.
What happens with incomplete markets?

- Debt *non-contingent* ⇒ less room for manipulation of SDF?

- Let $g_L < g_H$. Planner issues *non-contingent* debt:
 - In good times, $g' = g_L$, the planner will tax *less* to repay debt and finance g_L.
 - In bad times, $g' = g_H$, the planner will have to tax *more* to repay debt and finance g_H.

- **How much non-contingent debt does the planner issue?**
 - **Expected utility:** Make tax rate on *average* constant across $g_i, i = L, H$.
 - **Recursive utility:**
 - Is there a *counter-acting* force (tax more in good times and less in bad times)? NO.
 - **Price manipulation:** Use continuation values to make the *average* SDF (inverse of interest rate) large.
What happens with incomplete markets?

- Debt *non-contingent* ⇒ less room for manipulation of SDF?
- Let $g_L < g_H$. Planner issues *non-contingent* debt:
 - In good times, $g' = g_L$, the planner will tax *less* to repay debt and finance g_L.
 - In bad times, $g' = g_H$, the planner will have to tax *more* to repay debt and finance g_H.
- *How much non-contingent debt does the planner issue?*
 - *Expected utility:* Make tax rate on average constant across $g_i, i = L, H$.
 - *Recursive utility:*
 - Is there a *counter-acting* force (tax more in good times and less in bad times)? NO.
 - *Price manipulation:* Use continuation values to make the average SDF (inverse of interest rate) large.
 - *Result:* put *more* tax distortions on events with high u_c ⇒ tax *even more* bad times with high u_c.
Excess burden with incomplete markets II

- Optimality condition wrt to $B_t \equiv E_t m_{t+1} u_{c, t+1} b_t$:
Excess burden with incomplete markets II

- **Time-additive utility:** (AMSS 2002)

\[E_t x_{t+1} \Phi_{t+1} = \Phi_t, \quad x_{t+1} \equiv \frac{u_{c,t+1}}{E_t u_{c,t+1}} \]

⇒ keep distortions on “average” constant (Barro (1979)).
Excess burden with incomplete markets II

• Recursive utility: LoM for the inverse average excess burden

\[
\frac{1}{E_t n_{t+1} \Phi_{t+1}} = \frac{1}{\Phi_t} - \frac{E_{t-1} n_t \Phi_t}{\Phi_t} \cdot \xi_t \cdot b_{t-1}, \quad n_{t+1} \equiv m_{t+1} \cdot \frac{u_{c,t+1}}{E_t m_{t+1} u_{c,t+1}}
\]

where \(\xi_t \) is the relative marginal utility adjusted by \(A(x) \)

\[
\xi_t \equiv A(V_t)u_{ct} - A(\mu_{t-1})E_{t-1} m_t u_{ct}
\]

• MR: depends on \(\xi_t \) times non-contingent debt \(b_{t-1} \).
Excess burden with incomplete markets II

- **Recursive utility**: LoM for the inverse *average* excess burden

\[
\frac{1}{E_t n_{t+1} \Phi_{t+1}} = \frac{1}{\Phi_t} - \frac{E_{t-1} n_t \Phi_t}{\Phi_t} \cdot \xi_t \cdot b_{t-1}, \quad n_{t+1} \equiv m_{t+1} \cdot \frac{u_{c,t+1}}{E_t m_{t+1} u_{c,t+1}}
\]

where ξ_t is the *relative* marginal utility adjusted by $A(x)$

\[
\xi_t \equiv A(V_t) u_{ct} - A(\mu_{t-1}) E_{t-1} m_t u_{ct}
\]

- **MR**: depends on ξ_t *times* non-contingent debt b_{t-1}.

- $\xi_t \equiv 0$ for the time-additive case.
Excess burden with incomplete markets II

- **Recursive utility**: LoM for the inverse *average* excess burden

\[
\frac{1}{E_t n_{t+1} \Phi_{t+1}} = \frac{1}{\Phi_t} - \frac{E_{t-1} n_t \Phi_t}{\Phi_t} \cdot \xi_t \cdot b_{t-1}, \quad n_{t+1} \equiv m_{t+1} \cdot \frac{u_{c,t+1}}{E_t m_{t+1} u_{c,t+1}}
\]

where \(\xi_t \) is the *relative marginal utility* adjusted by \(A(x) \)

\[
\xi_t \equiv A(V_t) u_{ct} - A(\mu_{t-1}) E_{t-1} m_t u_{ct}
\]

- **MR**: depends on \(\xi_t \) *times* non-contingent debt \(b_{t-1} \).

- \(\xi_t \equiv 0 \) for the time-additive case.

- \(\Rightarrow \) Average tax distortions *not constant* anymore!
Excess burden with incomplete markets II

- Recursive utility: LoM for the inverse average excess burden

\[
\frac{1}{E_t n_{t+1} \Phi_{t+1}} = \frac{1}{\Phi_t} - \frac{E_{t-1} n_t \Phi_t}{\Phi_t} \cdot \xi_t \cdot b_{t-1}, \quad n_{t+1} \equiv m_{t+1} \cdot \frac{u_{c,t+1}}{E_t m_{t+1} u_{c,t+1}}
\]

where \(\xi_t \) is the relative marginal utility adjusted by \(A(x) \)

\[
\xi_t \equiv A(V_t) u_{ct} - A(\mu_{t-1}) E_{t-1} m_t u_{ct}
\]

- MR: depends on \(\xi_t \) times non-contingent debt \(b_{t-1} \).

- \(\xi_t \equiv 0 \) for the time-additive case.

- \(\Rightarrow \) Average tax distortions not constant anymore!

- \(u_c \) high in bad times \(\Rightarrow \) expect \(\xi_t(g_H) > 0 > \xi_t(g_L) \). Thus, if \(b_{t-1} > 0 \)
 - \(E_t n_{t+1} \Phi_{t+1} > \Phi_t \) if \(g_t = g_H \).
 - \(E_t n_{t+1} \Phi_{t+1} < \Phi_t \) if \(g_t = g_L \).
Excess burden with incomplete markets II

- **Recursive utility**: LoM for the inverse average excess burden

\[
\frac{1}{E_t n_{t+1} \Phi_{t+1}} = \frac{1}{\Phi_t} - \frac{E_{t-1} n_t \Phi_t}{\Phi_t} \cdot \xi_t \cdot b_{t-1}, \quad n_{t+1} \equiv m_{t+1} \cdot \frac{u_{c,t+1}}{E_{t} m_{t+1} u_{c,t+1}}
\]

where \(\xi_t \) is the relative marginal utility adjusted by \(A(x) \)

\[
\xi_t \equiv A(V_t) u_{ct} - A(\mu_{t-1}) E_{t-1} m_t u_{ct}
\]

- **MR**: depends on \(\xi_t \) times non-contingent debt \(b_{t-1} \).
- \(\xi_t \equiv 0 \) for the time-additive case.
- \(\Rightarrow \) Average tax distortions not constant anymore!
- \(u_c \) high in bad times \(\Rightarrow \) expect \(\xi_t(g_H) > 0 > \xi_t(g_L) \). Thus, if \(b_{t-1} > 0 \)
 - \(E_t n_{t+1} \Phi_{t+1} > \Phi_t \) if \(g_t = g_H \).
 - \(E_t n_{t+1} \Phi_{t+1} < \Phi_t \) if \(g_t = g_L \).

- **Tax more in bad times and less in good times** \(\Rightarrow \) larger weight on \(u_c \) in bad times (\(q_t \uparrow \) \(\Rightarrow \) amplify Aiyagari et al. (2002)).

- **optimal tax rate**
Concluding remarks

- Minimization of welfare distortions ⇒ tax more events against which it is *cheap* to issue debt (Taxes=Φ × MR).

- This insight holds in *all* environments ⇒ provides a *general principle* of taxation.

- This does *not* mean taxes are (on average or not) *smooth*!

- Taking asset prices seriously ⇒ *amplification* of standard taxation and debt issuance motives.
THANK YOU!
Table: Optimal fiscal policy with time-additive utility.

<table>
<thead>
<tr>
<th></th>
<th>Commitment</th>
<th>Discretion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Markets</td>
<td>Chari et al. (1994), Zhu (1992)</td>
<td></td>
</tr>
</tbody>
</table>
Related literature

Table: Optimal fiscal policy with \textit{time-additive} utility.

<table>
<thead>
<tr>
<th>Commitment</th>
<th>Discretion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete Markets</td>
<td>Lucas and Stokey (1983)</td>
</tr>
<tr>
<td></td>
<td>Krusell et al. (2004), Chari et al. (1994), Zhu (1992)</td>
</tr>
<tr>
<td></td>
<td>Occhino (2012), Debortoli and Nunes (2013)</td>
</tr>
<tr>
<td>Incomplete Markets</td>
<td>Aiyagari et al. (2002), Farhi (2010)</td>
</tr>
<tr>
<td></td>
<td>Bhandari et al. (2017), Martin (2009)</td>
</tr>
<tr>
<td></td>
<td>Karantounias (2017)</td>
</tr>
</tbody>
</table>

Table: Optimal fiscal policy with \textit{recursive} utility.

<table>
<thead>
<tr>
<th>Commitment</th>
<th>Discretion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete Markets</td>
<td>Karantounias (2018) : \textbf{EZW} utility</td>
</tr>
<tr>
<td></td>
<td>This paper: more \textit{general} utility</td>
</tr>
<tr>
<td>Incomplete Markets</td>
<td>This paper</td>
</tr>
<tr>
<td></td>
<td>This paper</td>
</tr>
</tbody>
</table>
Value function with complete markets under commitment

- $z \equiv u_c \cdot b.$

$$V(z, g) = \max_{c \geq 0, h \in [0,1], z'_g \in Z(g')} u(c, 1 - h) + \beta H^{-1} \left(\sum_{g'} \pi(g'|g) H(V(z'_g, g')) \right)$$

subject to

$$z = u_c c - u_l h + \beta \sum_{g'} \pi(g'|g) m'_g z'_g$$

surplus

$$c + g = h$$

price x debt
Value function with complete markets under commitment

• \(z \equiv u_c \cdot b \).

\[
V(z, g) = \max_{c \geq 0, h \in [0,1], z_{g'}, \in Z(g')} u(c, 1 - h) + \beta H^{-1} \left(\sum_{g'} \pi(g' | g) H \left(V(z_{g'}, g') \right) \right)
\]

subject to

\[
z = u_c c - u_l h + \beta \sum_{g'} \pi(g' | g) m'_{g'} z'_{g'}
\]

\[
\text{surplus}
\]

\[
c + g = h
\]

• Value functions in the constraint due to the SDF:

\[
m'_{g'} \equiv \frac{H'(V(z'_{g'}, g'))}{H'(\mu)}, \quad \text{and} \quad \mu \equiv H^{-1} \left(\sum_{g'} \pi(g' | g) H \left(V(z'_{g'}, g') \right) \right).
\]

• \(m'_{g'} \equiv 1 \) for time-additive utility.
Value function with incomplete markets under commitment

- State variable $B_t \equiv E_t m_{t+1} u_{c,t+1} \cdot b_t$.

subject to

\[
\sum_g \pi(g | g - h_g) m_g u_c(c_g, 1 - h_g) = u_c c_g - u_l h_g \quad \forall g
\]

\[
B_g \leq \bar{B}_g \quad \forall g.
\]
Value function with incomplete markets under commitment

- State variable $B_t \equiv E_t m_{t+1} u_{c,t+1} \cdot b_t$.

- Commit to *average* marginal utility: promises *across* states g.

$$W(B_-, g-) = \max_{c_g \geq 0, h_g \in [0,1], B_g} H^{-1} \left(\sum_g \pi(g|g-) H \left(u(c_g, 1 - h_g) + \beta W(B_g, g) \right) \right)$$

subject to

$$\frac{u_c(c_g, 1 - h_g)}{\sum_g \pi(g|g-) m_g u_c(c_g, 1 - h_g)} B_- = u_c c_g - u_l h_g + \beta B_g \quad \text{surplus} \quad \text{new debt} , \forall g$$

$$c_g + g = h_g, \forall g$$

$$B_g \leq B_g \leq \bar{B}_g , \forall g.$$
Value function with incomplete markets under commitment

• State variable $B_t \equiv E_t m_{t+1} u_{c,t+1} b_t$.

• Commit to *average* marginal utility: promises across states g.

$$W(B_-, g_-) = \max_{c_g \geq 0, h_g \in [0,1], B_g} H^{-1}\left(\sum_g \pi(g|g_-) H(u(c_g, 1 - h_g) + \beta W(B_g, g))\right)$$

subject to

$$\frac{u_c(c_g, 1 - h_g)}{\sum_g \pi(g|g_-) m_g u_c(c_g, 1 - h_g)} B_- = u_c c_g - u_l h_g + \beta B_g, \forall g$$

surplus new debt

$$c_g + g = h_g, \forall g$$

$$B_g \leq B_g \leq \bar{B}_g, \forall g.$$

• Value functions W in m_g:

$$m_g = \frac{H'(u(c_g, 1 - h_g) + \beta W(B_g, g))}{H'(H^{-1}\left(\sum_g \pi(g|g_-) H(u(c_g, 1 - h_g) + \beta W(B_g, g))\right))}, \forall g.$$
Parametric examples and drifts

- **Exponential CE:**

 \[\eta_{t+1} = A \cdot [z_{t+1} - E_t m_{t+1} z_{t+1}] \Rightarrow E_t m_{t+1} \eta_{t+1} = 0 \]

- \(\Rightarrow \frac{1}{\Phi_t} \text{ martingale wrt } \pi_t \cdot M_t \)

- **Drift wrt physical measure?**

 \[E_t \Phi_t \eta_{t+1} \geq \Phi_t - \text{Cov} \left(m_{t+1}, \Phi_{t+1} \right) \Rightarrow \text{if } \text{Cov} < 0 \Rightarrow \text{positive drift wrt } \pi_t \cdot M_t \]

- **Power CE, } \alpha \neq 1 \)

 \[\eta_{t+1} = \alpha \cdot [V - 1 \cdot z_{t+1} - E_t \kappa_{t+1} V - 1 \cdot z_{t+1}] \Rightarrow E_t \kappa_{t+1} \eta_{t+1} = 0 \]

 \(\Rightarrow \frac{1}{\Phi_t} \text{ martingale wrt } \pi_t \cdot K_t \Rightarrow \text{positive drift wrt } \pi_t \cdot K_t \)

- **Logarithmic CE:**

 \[\eta_{t+1} = V - 1 \cdot z_{t+1} - E_t V - 1 \cdot z_{t+1} \]

 \(\Rightarrow \frac{1}{\Phi_t} \text{ martingale wrt } \pi_t \Rightarrow \text{positive drift wrt } \pi_t \)
Parametric examples and drifts

• Exponential CE:

\[\eta_{t+1} = A \cdot [z_{t+1} - E_t m_{t+1} z_{t+1}] \Rightarrow E_t m_{t+1} \eta_{t+1} = 0 \]

• \(\Rightarrow 1/\Phi_t \) martingale wrt \(\pi_t \cdot M_t \) \(\Rightarrow \Phi_t \) submartingale wrt \(\pi_t \cdot M_t \),

\[E_t m_{t+1} \Phi_{t+1} \geq \Phi_t. \]
Parametric examples and drifts

- **Exponential CE:**

 \[\eta_{t+1} = A \cdot [z_{t+1} - E_t m_{t+1} z_{t+1}] \Rightarrow E_t m_{t+1} \eta_{t+1} = 0 \]

- \(\Rightarrow 1/\Phi_t \text{ martingale wrt } \pi_t \cdot M_t \Rightarrow \Phi_t \text{ submartingale wrt } \pi_t \cdot M_t, \)
 \(E_t m_{t+1} \Phi_{t+1} \geq \Phi_t. \)

- Drift wrt *physical* measure?

 \[E_t \Phi_{t+1} \geq \Phi_t - \text{Cov}_t(m_{t+1}, \Phi_{t+1}) \]

 \(\Rightarrow \text{if Cov}_t < 0 \Rightarrow \text{positive drift wrt } \pi_t. \)
Parametric examples and drifts

- **Exponential CE:**
 \[
 \eta_{t+1} = A \cdot [z_{t+1} - E_t m_{t+1} z_{t+1}] \Rightarrow E_t m_{t+1} \eta_{t+1} = 0
 \]

- \(1/\Phi_t\) martingale wrt \(\pi_t \cdot M_t \Rightarrow \Phi_t\) submartingale wrt \(\pi_t \cdot M_t\),
 \(E_t m_{t+1} \Phi_{t+1} \geq \Phi_t\).

- Drift wrt *physical* measure?

 \[
 E_t \Phi_{t+1} \geq \Phi_t - Cov_t(m_{t+1}, \Phi_{t+1})
 \]

 \(\Rightarrow\) if \(Cov_t < 0 \Rightarrow\) positive drift wrt \(\pi_t\).

- **Power CE, \(\alpha \neq 1\)**
 \[
 \eta_{t+1} = \alpha \cdot [V_{t+1}^{-1} z_{t+1} - E_t \kappa_{t+1} V_{t+1}^{-1} z_{t+1}] \Rightarrow E_t \kappa_{t+1} \eta_{t+1} = 0
 \]

- \(1/\Phi_t\) martingale wrt \(\pi_t \cdot K_t \Rightarrow\) positive drift wrt \(\pi_t \cdot K_t\).
Parametric examples and drifts

• Exponential CE:

\[\eta_{t+1} = A \cdot [z_{t+1} - E_t m_{t+1} z_{t+1}] \Rightarrow E_t m_{t+1} \eta_{t+1} = 0 \]

\[\Rightarrow 1/\Phi_t \text{ martingale wrt } \pi_t \cdot M_t \Rightarrow \Phi_t \text{ submartingale wrt } \pi_t \cdot M_t, \]

\[E_t m_{t+1} \Phi_{t+1} \geq \Phi_t. \]

• Drift wrt *physical* measure?

\[E_t \Phi_{t+1} \geq \Phi_t - \text{Cov}_t(m_{t+1}, \Phi_{t+1}) \]

\[\Rightarrow \text{if } \text{Cov}_t < 0 \Rightarrow \text{positive drift wrt } \pi_t. \]

• Power CE, \(\alpha \neq 1 \)

\[\eta_{t+1} = \alpha \cdot [V_{t+1}^{-1} z_{t+1} - E_t \kappa_{t+1} V_{t+1}^{-1} z_{t+1}] \Rightarrow E_t \kappa_{t+1} \eta_{t+1} = 0 \]

\[\Rightarrow 1/\Phi_t \text{ martingale wrt } \pi_t \cdot K_t \Rightarrow \text{positive drift wrt } \pi_t \cdot K_t. \]

• Logarithmic CE:

\[\eta_{t+1} = V_{t+1}^{-1} z_{t+1} - E_t V_{t+1}^{-1} z_{t+1} \]

\[\Rightarrow 1/\Phi_t \text{ martingale wrt } \pi_t \Rightarrow \text{positive drift wrt } \pi_t. \]
Optimal tax rate I

- Complete markets and commitment, \(t \geq 1 \)

\[
\tau_t = \frac{\Phi_t (\epsilon_{cc,t} + \epsilon_{ch,t} + \epsilon_{hh,t} + \epsilon_{hc,t})}{1 + \Phi_t (1 + \epsilon_{hh,t} + \epsilon_{hc,t})}
\]

where \(\epsilon_{cc} \equiv -\frac{u_{cc}}{u_c} \), \(\epsilon_{ch} \equiv \frac{u_{cl}}{u_c} \) and \(\epsilon_{hh} \equiv -\frac{u_{ll}}{u_l} \), \(\epsilon_{hc} \equiv \frac{u_{cl}}{u_l} \), the respective own and cross elasticities.
Optimal tax rate I

• Complete markets and commitment, \(t \geq 1 \)

\[
\tau_t = \frac{\Phi_t (\epsilon_{cc,t} + \epsilon_{ch,t} + \epsilon_{hh,t} + \epsilon_{hc,t})}{1 + \Phi_t (1 + \epsilon_{hh,t} + \epsilon_{hc,t})}
\]

where \(\epsilon_{cc} \equiv -u_{cc} c / u_c, \epsilon_{ch} \equiv u_{cl} h / u_c \) and \(\epsilon_{hh} \equiv -u_{ll} h / u_l, \epsilon_{hc} \equiv u_{cl} c / u_l \), the respective own and cross elasticities.

• Assume a utility function with constant elasticities

\[
U(c, 1-h) = \frac{c^{1-\rho} - 1}{1 - \rho} - a_h \frac{h^{1+\phi_h}}{1 + \phi_h}
\]

• \(\Rightarrow \) \(\tau_t \) moves 1-1 with \(\Phi_t \), with law of motion

\[
\frac{1}{\tau_{t+1}} = \frac{1}{\tau_t} - \frac{1}{\rho + \phi_h} \eta_{t+1}
\]
Optimal tax rate II: Incomplete markets and commitment

- Power in \(c \) and \(h \) (constant Frisch): The optimal tax rate with recursive utility is

\[
\tau_t = \frac{\Phi_t (\rho + \phi_h) - \rho [\Phi_t - E_{t-1} n_t \Phi_t] \frac{b_{t-1}}{c_t}}{1 - (E_{t-1} n_t \Phi_t) \xi_t b_{t-1} + \Phi_t (1 + \phi_h)}
\]

- The respective tax rate for the time-additive case of Aiyagari et al. (2002) is

\[
\tau_t = \frac{\Phi_t (\rho + \phi_h) - \rho [\Phi_t - \Phi_{t-1}] \frac{b_{t-1}}{c_t}}{1 + \Phi_t (1 + \phi_h)}
\]

- if \(\xi_t > 0 \) (marginal utility relatively high) \(\Rightarrow \) tax rate ↑.
Excess burden without commitment and complete markets

- **Value functions:**

\[
\begin{align*}
\Phi_{t+1} &= \Phi_t \cdot \left[1 + \frac{\partial C_{t+1}}{\partial B_{t+1}} \cdot B_{t+1}\right] \\
&\propto \Phi_t \cdot MR_t.
\end{align*}
\]

- **Excess burden with recursive utility:**

\[
\begin{align*}
\Phi_{t+1} &= \left[1 + \frac{\partial C_{t+1}}{\partial b_{t+1}} \cdot b_{t+1}\right] - \frac{1}{\Phi_t - \nu_{t+1}} \\
&\equiv A\left(V_{t+1}\right) u_{c,t+1} b_{t+1} - A\left(\mu_t\right) \cdot E_t m_{t+1} u_{c,t+1} b_{t+1}.
\end{align*}
\]

- **Relative “debt” position:**

\[
\nu_{t+1} = \frac{A\left(V_{t+1}\right) u_{c,t+1} b_{t+1}}{A\left(\mu_t\right) \cdot E_t m_{t+1} u_{c,t+1} b_{t+1}}.
\]

- **\(u'_{c,\text{channel}} \):** tax more tomorrow vs today if you issue debt.

- **\(V_{t+1} \):** tax more (less) if debt is relatively high (low).

\[\Rightarrow\] the two incentives may oppose each other.
Excess burden without commitment and complete markets

- **Value functions:**

 - **Complete markets- MPE**

- **Excess burden with time-additive utility:**

 \[\Phi_{t+1} = \Phi_t \cdot \left[1 + \frac{u_{cc,t+1} - u_{cl,t+1}}{u_{c,t+1}} \frac{\partial C}{\partial B_{t+1}} \cdot B_{t+1} \right] \text{ or } \Phi \times MR \]

- **Excess burden with recursive utility:**

 \[\Phi_{t+1} = \Phi_t \cdot \left[1 + \frac{u_{cc,t+1} - u_{cl,t+1}}{u_{c,t+1}} \frac{\partial C}{\partial b_{t+1}} \cdot b_{t+1} \right] - \frac{1}{\Phi_t} \left[1 + \frac{u_{cc,t+1} - u_{cl,t+1}}{u_{c,t+1}} \frac{\partial C}{\partial b_{t+1}} \cdot b_{t+1} \right] \]

- **Relative “debt” position:**

 \[\nu_{t+1} \equiv A(\nu_{t+1}) \frac{u_{c,t+1} b_{t+1}}{u_{c,t+1} b_{t+1} - A(\mu_{t}) \cdot E_{t} \mu_{t+1}} \]

- **Return channel:**

 - Tax more tomorrow vs today if you issue debt.
 - Tax more (less) if debt is relatively high (low).

- \Rightarrow the two incentives may oppose each other.
Excess burden without commitment and complete markets

- **Value functions:** Complete markets- MPE

- **Excess burden with time-additive utility:**
 \[\Phi_{t+1} = \Phi_t \cdot \left[1 + \frac{u_{cc,t+1} - u_{cl,t+1}}{u_{c,t+1}} \frac{\partial C}{\partial B_{t+1}} \cdot B_{t+1} \right]. \]

- **Excess burden with recursive utility:**
 \[\frac{1}{\Phi_{t+1}} = \left[1 + \frac{u_{cc,t+1} - u_{cl,t+1}}{u_{c,t+1}} \frac{\partial C}{\partial b_{t+1}} \cdot b_{t+1} \right]^{-1} \left[\frac{1}{\Phi_t} - \nu_{t+1} \right] \]

- **Relative “debt” position:**
 \[\nu_{t+1} \equiv A(V_{t+1})u_{c,t+1}b_{t+1} - A(\mu_t) \cdot E_t m_{t+1} u_{c,t+1}b_{t+1}. \]
Excess burden without commitment and complete markets

- Value functions: Complete markets - MPE

- Excess burden with time-additive utility:
 \[\Phi_{t+1} = \Phi_t \cdot \left[1 + \frac{u_{cc,t+1} - u_{cl,t+1}}{u_{c,t+1}} \frac{\partial C}{\partial B_{t+1}} \cdot B_{t+1} \right]. \]
 \[\propto \Phi \times MR \]

- Excess burden with recursive utility:
 \[\frac{1}{\Phi_{t+1}} = \left[1 + \frac{u_{cc,t+1} - u_{cl,t+1}}{u_{c,t+1}} \frac{\partial C}{\partial b_{t+1}} \cdot b_{t+1} \right]^{-1}\left[\frac{1}{\Phi_t} - \nu_{t+1} \right] \]

- Relative “debt” position:
 \[\nu_{t+1} \equiv A(V_{t+1})u_{c,t+1}b_{t+1} - A(\mu_t) \cdot E_{t}m_{t+1}u_{c,t+1}b_{t+1}. \]

- \(u_{c}' \) channel: tax more tomorrow vs today if you issue debt.

- \(V_{t+1} \): tax more (less) if debt is relatively high (low).

\[\Rightarrow \text{the two incentives may oppose each other.} \]
Excess burden without commitment and incomplete markets

- **Value function:**
 Incomplete markets -MPE

- **Excess burden with time-additive utility:**
 \[
 E_t x_{t+1} \Phi_{t+1} = \Phi_t \cdot \left[1 + E_t x_{t+1} \frac{u_{cc,t+1} - u_{cl,t+1}}{u_{c,t+1}} \frac{\partial C}{\partial B_{t+1}} \cdot B_{t+1} \right]
 \]
 where \(x_{t+1} \equiv u_{c,t+1}/E_t u_{c,t+1} \)
Excess burden without commitment and incomplete markets

- Value function: Incomplete markets - MPE

- **Excess burden with time-additive utility:**

 \[
 E_t x_{t+1} \Phi_{t+1} = \Phi_t \cdot \left[1 + E_t x_{t+1} \frac{u_{cc,t+1} - u_{cl,t+1}}{u_{c,t+1}} \frac{\partial C}{\partial B_{t+1}} \cdot B_{t+1} \right]
 \]

 where \(x_{t+1} \equiv \frac{u_{c,t+1}}{E_t u_{c,t+1}}\)

- **Excess burden with recursive utility:**

 \[
 E_t n_{t+1} \Phi_{t+1} (1 - \xi_{t+1} b_t \Phi_t) = \Phi_t \left[1 + E_t n_{t+1} \frac{u_{cc,t+1} - u_{cl,t+1}}{u_{c,t+1}} C_{b,t+1} \cdot b_t \right]
 \]

 with \(\xi_{t+1} \equiv A(V_{t+1}) u_{c,t+1} - A(\mu_t) E_t m_{t+1} u_{c,t+1}\).

 “Averaging” with respect to \(n_{t+1}\) measure.

 Continuation value channel depends on relative marginal utility \(\xi_{t+1}\).
Value function with complete markets and no commitment

- Markov-perfect equilibrium: state variable \((b, g)\).

\[
V(b, g) = \max_{c, h, b'} u(c, 1 - h) + \beta H^{-1} \left(\sum_{g'} \pi(g'|g) H(V(b'_g, g')) \right)
\]

subject to

\[
u_c b = u_c c - u_l h + \beta \sum_{g'} \pi(g'|g) m'_g u_c(C(b'_g, g'), 1 - H(b'_g, g')) b'_g
\]

\[
c + g = h
\]

- where \(m'_g \equiv \frac{H'(V(b'_g, g'))}{H'(\mu)}\)

- MPE: \(c = C, h = H\).
Value function with incomplete markets and no commitment

- State variable is non-contingent debt: \((b_-, g)\).

\[
V(b_-, g) = \max_{c \geq 0, h \in [0,1], b \in \mathcal{B}} u(c, 1-h) + \beta H^{-1}(\sum_{g'} \pi(g'|g) H(V(b, g'))) \\
\text{subject to} \\
u_c(c, 1-h)b_- = u_c c - u_l h + \beta \left(\sum_{g'} \pi(g'|g)m'_{g'} u_c(C(b, g'), 1 - \mathcal{H}(b, g')) \right) \cdot b \\
c + g = h \\
\text{where } m'_{g'} \equiv \frac{H'(V(b,g'))}{H'(H^{-1}(\sum_{g'} \pi(g'|g) H(V(b, g'))))}. \\
\text{MPE: } c = C, h = \mathcal{H}.
Numerical exercises

Calibration:

- Utility function: \(\rho = 1 < \gamma \)

\[
v_t = \ln c_t - a_h \frac{h_t^{1+\phi_h}}{1 + \phi_h} + \frac{\beta}{(1 - \beta)(1 - \gamma)} \ln E_t \exp((1 - \beta)(1 - \gamma)v_{t+1})
\]

- Parameters: \((\beta, \phi_h, \gamma) = (0.96, 1, 10)\)

- Shocks
 - i.i.d. shocks: mean 20% and std 2%.
 - Chari et al. (1994) shocks.

Computational issues:

- Endogenous state space.

- Lack of the *contraction* property due to the value function in the constraint.

- Non-convexities.
Instructive sample path

- **g**
- **Debt in marginal utility units z**
- **Tax rate in %**
- **Consumption**
- **Surplus-output ratio in %**
- **Debt-output ratio in %**

Graphs and data points are shown for different time periods (t) indicating trends and values for each category.
Random sample paths

![Graphs of tax rate and debt-to-output ratio over time.](image-url)
Volatility and back-loading of distortions

- Positive drift.
- Increasing volatility over time, “fanning-out” of the distribution.
Stationary moments

<table>
<thead>
<tr>
<th>Tax rate in %</th>
<th>i.i.d.</th>
<th>CCK shocks</th>
<th>$2 \times \text{std}(g)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>30.86</td>
<td>30.49</td>
<td>31.26</td>
</tr>
<tr>
<td>St. Dev</td>
<td>4.94</td>
<td>5.52</td>
<td>7.76</td>
</tr>
<tr>
<td>St. Dev of Δ</td>
<td>0.17</td>
<td>0.41</td>
<td>0.90</td>
</tr>
<tr>
<td>Autocorrelation</td>
<td>0.9994</td>
<td>0.9972</td>
<td>0.9932</td>
</tr>
</tbody>
</table>

- Enormous volatility of the tax rate and therefore of debt.
- Chari et al. (1994): volatility of tax rate of 5-15 basis points.
Stationary distribution: debt

<table>
<thead>
<tr>
<th>debt/output in %</th>
<th>i.i.d.</th>
<th>CCK shocks</th>
<th>$2 \times \text{std}(g)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>181.97</td>
<td>172.15</td>
<td>180.34</td>
</tr>
<tr>
<td>St. Dev</td>
<td>104.28</td>
<td>117.05</td>
<td>163.22</td>
</tr>
<tr>
<td>St. Dev of Δ</td>
<td>12.72</td>
<td>12.48</td>
<td>26.07</td>
</tr>
<tr>
<td>Autocorrelation</td>
<td>0.9926</td>
<td>0.9972</td>
<td>0.9877</td>
</tr>
</tbody>
</table>

