“Tacit” bundling among rivals: Limited availability bargains to loss-averse consumers

Anastasia Leontiou
University of Ioannina

Nicholas Ziros
University of Cyprus

20th CRETE
July 15, 2022
Retailers often offer deals that are subject to “limited availability” to boost their sales. (early-bird discounts, limited-time deals, first come first served offers, etc.)

Bait and Switch
Bait and switch pricing to loss averse consumers

Loss aversion ➞ Individuals weight losses relative to a reference point more than they weight gains.

Bait ➞ Such deals attract consumers’ interest and create an attachment effect by defining their consumption reference point.

Switch ➞ When the deal is not available, loss aversion leads them to ex-ante unfavorable purchases to avoid the disappointment of leaving the store empty-handed.

- e.g. buy the product at a higher price
 - buy other (substitute) products
Introduction

Heidhues and Köszegi (2014) ⇒ A monopolist commits to a price distribution, consisting of a sale and a high regular price. The sale makes consumers anchored to the idea of consuming the products. To avoid disappointment, consumers have a higher willingness to pay and end up buying the product even when the price is high.

Rosato (2016) ⇒ A seller announces a bargain price on a good that is subject to limited availability. He creates an attachment to consumption that allows him to extract consumer surplus via a high price on a substitute good (rip-off) when the bargain is not available.
Our analysis

- We introduce a bait and switch pricing model in a partially differentiated duopoly, where the joint consumption of the products is possible.

- Without any explicit exchange of information, sellers achieve to coordinate in high prices on their products and consumers still buy both products ⇒ "Tacit" bundling

- Expectation-based loss aversion hikes the prices of both products up relative to deterministic pricing.
Model

- 2 sellers A and B \(\Rightarrow \) goods a and b (partially differentiated)

 - marginal production cost \(c \geq 0 \)

- unit mass of identical consumers

- intrinsic valuations: \(v = (v_a, v_b, v_{ab}) \),

 where \(v_a \geq v_b > 0 \)

 \[
 v_{ab} = v_a + v_b + z \quad \text{and} \quad z < 0 \quad \text{(partial substitutes)}
 \]
Reference dependence (Kőszegi and Rabin 2006)

Overall utility = Actual utility + Gain-loss utility
Reference dependence (Kőszegi and Rabin 2006)

Overall utility = Actual utility + Gain-loss utility

- Actual utility = \(v_i - p_i \)
Reference dependence (Kőszegi and Rabin 2006)

Overall utility = Actual utility + Gain-loss utility

- Actual utility = $v_i - p_i$

- Gain-loss utility

$$\mu(x) = \begin{cases}
\eta x, & \text{if } x \geq 0 \\
\eta \lambda x, & \text{if } x < 0
\end{cases}$$

where $\eta > 0$ is the weight attached to the extra gain or loss

$\lambda > 1$ is the coefficient of loss aversion

$x = (v_i - v^r) \text{ or } (p_i - p^r)$
Reference dependence (Kőszegi and Rabin 2006)

Overall utility = Actual utility + Gain-loss utility

- Actual utility = $v_i - p_i$

- Gain-loss utility

$$\mu(x) = \begin{cases} \eta x, & \text{if } x \geq 0 \\ \eta \lambda x, & \text{if } x < 0 \end{cases}$$

where $\eta > 0$ is the weight attached to the extra gain or loss

$\lambda > 1$ is the coefficient of loss aversion

$x = (v_i - v^r)$ or $(p_i - p^r)$

Reference points \Rightarrow a pair of probability distribution $F = (F_v, F_p)$

$$U[(v_i, p_i)| (v^r, p^r)] = v_i - p_i + \int_{v^r} \mu(v_i - v^r) \, dF_v(v^r) + \int_{p^r} \mu(p_i - p^r) \, dF_p(p^r)$$
Timing

- **t=0** ⇒ Seller B announces and commits to \((p^s_b, p_b, q)\)
 Consumers form their expectations about the purchase and choose a plan the maximizes their expected utility (PPE)

- **t=1** ⇒ Seller A sets \(p_a[p^s_b, p_b, q]\)

- **t=2** ⇒ Uncertainty is resolved and consumers execute their plans.

We assume no explicit collusion between the sellers.
Consumers’ Problem

Given \((p_b^s, p_b, q)\), consumers form rational expectations concerning their purchase and make a plan.
Consumers’ Problem

Given \((p_b^s, p_b, q)\), consumers form rational expectations concerning their purchase and make a plan.

Potential purchase plans:

\[\sigma \in \left[\{\emptyset, \emptyset\}, \{a, a\}, \{b, b\}, \{b, \emptyset\}, \{b, a\}, \{ab, a\}, \{ab, b\}, \{ab, ab\}, \{ab, \emptyset\} \right] \]
Consumers’ Problem

Given \((p_b^s, p_b, q)\), consumers form rational expectations concerning their purchase and make a plan.

Potential purchase plans:

\[\sigma \in \left[\{\emptyset, \emptyset\}, \{a, a\}, \{b, b\}, \{b, \emptyset\}, \{b, a\}, \{ab, a\}, \{ab, b\}, \{ab, ab\}, \{ab, \emptyset\}\right]\]

- **Personal Equilibrium** \(\Rightarrow U[\sigma] \geq U[\sigma']\) for any \(\sigma \neq \sigma'\)
Consumers’ Problem

Given \((p_b^s, p_b, q)\), consumers form rational expectations concerning their purchase and make a plan.

Potential purchase plans:

\[
\sigma \in \left[\{\emptyset, \emptyset\}, \{a, a\}, \{b, b\}, \{b, \emptyset\}, \{b, a\}, \{ab, a\}, \{ab, b\}, \{ab, ab\}, \{ab, \emptyset\}\right]
\]

- **Personal Equilibrium** \(\Rightarrow U[\sigma] \geq U[\sigma']\) for any \(\sigma \neq \sigma'\)

In the case of multiple PEs

- **Preferred Personal Equilibrium** \(\Rightarrow\)

\[EU[\sigma] > EU[\sigma']\] for any \(\sigma\) and \(\sigma''\) that are PEs.

(Kőszegi and Rabin 2006)
Profit maximization problems

Seller B \(\Rightarrow \quad \max_{p_b^s, p_b, q} \Pi_B[p_b^s p_b, q] = q p_b^s + (1 - q) p_b - c \)

s.t. \(\sigma(p_b^s, p_b, q) \) is a PPE for consumers

Seller A \(\Rightarrow \quad \max_{p_a} \Pi_A[p_a] = p_a - c \)
Profit maximization problems

Seller B \Rightarrow $\max_{p_b^s, p_b, q} \Pi_B[p_b^s p_b, q] = q p_b^s + (1 - q) p_b - c$

s.t. $\sigma(p_b^s, p_b, q)$ is a PPE for consumers

Seller A \Rightarrow $\max_{p_a} \Pi_A[p_a] = p_a - c$

Deterministic Pricing

- For $c < v_b + z$ \Rightarrow
 \[
 \begin{cases}
 p_a^* = v_a + z \\
 p_b^* = v_b + z
 \end{cases}
 \]

- For $c > v_b + z$ \Rightarrow
 \[
 \begin{cases}
 p_a^* = (v_a - v_b) + c \\
 \text{Seller B stays out of the market}
 \end{cases}
 \]
Bait and Switch induces the joint consumption of the products

Potential Purchase plans

\[\sigma : [\{\emptyset, \emptyset\}, \{a, a\}, \{b, b\}, \{b, \emptyset\}, \{b, a\}, \{ab, a\}, \{ab, b\}, \{ab, ab\}, \{ab, \emptyset\}] \]

Bait and switch: Seller B ⇒ \([b, b], \{ab, b\}\), or \([ab, ab]\) ← PPE

Eliminated by market competition

\(p_a\) such that they are not PE (and therefore not PPE)
Equilibrium Prices

\[p_b^s = (v_b + z) \frac{1+\eta}{1+\eta} \quad \Rightarrow \text{eliminates} \quad \{\emptyset, \emptyset\}, \{a, a\} \]
Equilibrium Prices

- $p_b^s = (v_b + z) \frac{1+\eta}{1+\eta \lambda}$ \implies \text{eliminates} \{\emptyset, \emptyset\}, \{a, a\}

- The plans \{b, a\}, \{b, \emptyset\}, \{ab, \emptyset\} are not contingent.
Equilibrium Prices

- \(p_b^s = (v_b + z) \frac{1+\eta}{1+\eta} \) \ \Rightarrow \text{eliminates} \ \{\emptyset, \emptyset\}, \{a, a\}

- The plans \{b, a\}, \{b, \emptyset\}, \{ab, \emptyset\} are not contingent.

- \(p_b^* = (v_b + z) + \frac{2\eta(\lambda-1)q}{1+\eta(\lambda-1)q} \ p_b^s \) \ \Rightarrow \text{Consumers are indifferent between} \ \{ab, ab\} \text{ and } \{ab, a\}
Equilibrium Prices

- \(p_b^s = (v_b + z) \frac{1+\eta}{1+\eta\lambda} \Rightarrow \) eliminates \(\{\emptyset, \emptyset\}, \{a, a\} \)

- The plans \(\{b, a\}, \{b, \emptyset\}, \{ab, \emptyset\} \) are not contingent.

- \(p_b^* = (v_b + z) + \frac{2\eta(\lambda-1)q}{1+\eta(\lambda-1)q} p_b^s \Rightarrow \) Consumers are indifferent between \(\{ab, ab\} \) and \(\{ab, a\} \)

- \(p_a^* = (v_a + z) \frac{1+\eta\lambda}{1+\eta} - \frac{\eta(\lambda-1)q}{1+\eta} (p_b - p_b^s) \Rightarrow \{ab, ab\} \) is a PE

"Tacit" bundling among rivals: Limited availability bargains to loss-averse consumers
Equilibrium Prices

- \(p_b^s = (v_b + z) \frac{1+\eta}{1+\eta} \lambda \) \(\Rightarrow \) eliminates \{\emptyset, \emptyset\}, \{a, a\}

- The plans \{b, a\}, \{b, \emptyset\}, \{ab, \emptyset\} are not contingent.

- \(p_b^* = (v_b + z) + \frac{2\eta(\lambda-1)q}{1+\eta(\lambda-1)q} p_b^s \Rightarrow \) Consumers are indifferent between \{ab, ab\} and \{ab, a\}

- \(p_a^* = (v_a + z) \frac{1+\eta \lambda}{1+\eta} - \frac{\eta(\lambda-1)q}{1+\eta} (p_b - p_b^s) \Rightarrow \) \{ab, ab\} is a PE

Availability level \(\Rightarrow q^* \in (0, \frac{1}{2}) \)
Equilibrium Prices

- \(p_b^s = (v_b + z) \frac{1 + \eta}{1 + \eta \lambda} \) \Rightarrow \text{eliminates} \ \{\emptyset, \emptyset\}, \ \{a, a\}

- The plans \{b, a\}, \{b, \emptyset\}, \{ab, \emptyset\} are not contingent.

- \(p_b^* = (v_b + z) + \frac{2 \eta (\lambda - 1) q}{1 + \eta (\lambda - 1) q} p_b^s \) \Rightarrow \text{Consumers are indifferent between} \ \{ab, ab\} \text{ and } \{ab, a\}

- \(p_a^* = (v_a + z) \frac{1 + \eta \lambda}{1 + \eta} - \frac{\eta (\lambda - 1) q}{1 + \eta} (p_b - p_b^s) \) \Rightarrow \{ab, ab\} \text{ is a PE}

Availability level \Rightarrow \ q^* \in (0, \frac{1}{2})

Consumers always buy both products
Bait and Switch vs Deterministic Pricing

Bait and switch is always preferred over deterministic pricing for relatively weak substitutes ($z \geq \hat{z}$).

Higher loss aversion makes bait and switch more likely.
Bait and Switch vs Deterministic Pricing \((c < v_b + z)\)

\[p_a^* \text{ and } p_b^* \text{ are higher than under deterministic pricing} \]

Tacit Bundling

“Tacit” bundling among rivals: Limited availability bargains to loss-averse consumers
Bait and Switch vs Deterministic Pricing \((c \geq v_b + z)\)

\[p_a^* \text{ and } p_b^* \text{ are higher than under deterministic pricing} \]

Tacit Bundling
Conclusions

- Bait and switch pricing under imperfect competition can be a mechanism that induces collusion between rival sellers without any explicit exchange of information.

- Even though prices of both the products are high relative to deterministic pricing, consumers always buy both products \Rightarrow Bundling
Thank you for your attention!