Debt-Stabilizing Properties of GDP-Linked Securities: A Macro-Finance Perspective

Sarah Mouabbi1 Jean-Paul Renne2 Jean-Guillaume Sahuc1

1Banque de France

2University of Lausanne, HEC

The views expressed are solely those of the authors and do not necessarily reflect the views of the Banque de France.
The Next New Thing in Finance – Bonds Linked Directly to the Economy,

Introduction
Many Proponents, Few Implementations

- Numerous economists / think tanks call for the introduction of GDP-LBs.
- Could provide the government with an automatic stabilizer to its finance:

 Debt service linked to GDP ⇒ debt-to-GDP volatility ↓ ⇒ sovereign defaults ↓

GDP-L instruments are still the exception

- No case of sovereign issuance where investors take on *symmetrical* risks.
- GDP-linked “warrants” have been issued as part of debt restructuring agreements.
Introduction

Standard analysis

• Debt accumulation process:

\[D_t = D_{t-1} \exp(rate_t) - BS_t \]
\[\Rightarrow d_t = d_{t-1} \exp(rate_t - \pi_t - y_t) - bs_t, \]

where BS = budget surplus and \(d \) = debt-to-GDP ratio \((D/(Y \times P))\).

• \(rate_t \) depends on the bonds issued on date \(t-1 \) by the government:

<table>
<thead>
<tr>
<th>Type of bond</th>
<th>(rate_t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal bond</td>
<td>(i)</td>
</tr>
<tr>
<td>ILB</td>
<td>(r + \pi_t)</td>
</tr>
<tr>
<td>GDP-LB</td>
<td>(r^* + y_t + \pi_t)</td>
</tr>
</tbody>
</table>

With GDP-LBs, \(d_t \) remains constant \((\equiv d_0)\) if \(bs_t \) is set at \(d_0(\exp(r^*) - 1)\).

• Limitations:
 (i) \(i, r \) and \(r^* \) are cst, (ii) only short-term bonds, (iii) unclear pricing assump.
Why should one expect GDP risk premiums to be positive?

Panel (a) – GDP Surprises and Stock Returns

Panel (b) – Realized-over-Expected Real Payoff

- Allow for time-varying rates and bonds of any maturity.
- Standard macro-finance asset-pricing model.
- What are the debt-stabilizing properties of GDP-LBs?
This paper

The model:
- Closed-form (approximated) bond pricing formula.
Main findings:

(a) Countercyclical GDP-LB yields: embed a RP \sim 40 bps on avg.

$[GDP-LB \text{ RP} = \text{avg excess return over inflation-linked bond of same maturity}]$

(b) GDP-LBs make it easier to forecast debt-to-GDP ratios in the SR/MR.

(c) Unclear ability of GDP-LBs to avoid high debt-to-GDP ratios in the LR.

(d) Debt-stabilizing budget surplus: More predictable but higher on avg.
Model
Consumption, GDP and inflation dynamics

• Infinity of identical investors whose consumption C_t follows:

$$c_t \equiv \log C_t = c_{t-1} + g_c + \nu_t,$$

(1)

where ν_t is an i.i.d. zero-mean shock (c.d.f. is f).

• Dynamics of real GDP (Y_t) and price index (P_t):

$$\Delta y_t = \log \frac{Y_t}{Y_{t-1}} = g_y + \rho_y \nu_t + \varepsilon^y_t,$$

(2)

$$\pi_t = \log \frac{P_t}{P_{t-1}} = \bar{\pi}(1 - \psi) + \psi \pi_{t-1} + \rho_{\pi} \nu_t + \varepsilon^\pi_t,$$

(3)

with $\varepsilon^y_t \sim i.i.d. \mathcal{N}(0, \sigma^2_y)$ and $\varepsilon^\pi_t \sim i.i.d. \mathcal{N}(0, \sigma^2_{\pi})$.

• Dividends:

$$\log Div_t = \log Div_{t-1} + \bar{div} + \rho_d \nu_t + \varepsilon^d_t.$$

8
Model

Agents' preferences

- Utility over consumption: ([Campbell and Cochrane, 1999] and [Wachter, 2006])

\[
\mathbb{E}_t \left(\sum_{h=0}^{+\infty} \delta^h \frac{(C_{t+h} - X_{t+h})^{1-\gamma} - 1}{1-\gamma} \right),
\]

where \(X_t \) is the external “habit” stock, defined through surplus consumption \(S_t \):

\[
S_t \equiv \frac{\bar{C}_t - X_t}{\bar{C}_t}
\]

where \(\bar{C} \): aggr. consumption.

- External habit: Small individual investors take \(X_t \) as given (unit mass ⇒ \(\bar{C} \equiv C \)).
- In this context, s.d.f. between dates \(t \) and \(t+1 \):

\[
M_{t,t+1} = \delta \left(\frac{S_{t+1}}{S_t} \frac{C_{t+1}}{C_t} \right)^{-\gamma}.
\]

- \(S_t \) (and therefore \(X_t \) by eq.5) deterministically depends on consumption:

\[
s_{t+1} = \log S_{t+1} = (1 - \phi)\bar{s} + \phi s_t + \lambda(s_t)(c_{t+1} - \mathbb{E}_t(c_{t+1}))
\]

where \(\lambda(s_t) \leq 0 \).
Model
Bond pricing and yields definitions

• Model is discretised and solved.
• $\Pi :=$ matrix of transition probabilities (across discretised states).
• Explicit formula for Q, the risk-neutral equivalent of Π.
\Rightarrow Explicit (discretised) pricing formula.
• Nominal and real interest-rates are given by:

$$i_{t,h} = F^n_h(s_t) + a_h + b'_h\pi_t$$
$$r_{t,h} = F^r_h(s_t),$$

Approximate recursive solutions for F^n_h, F^r_h, a_h and b_h.

10
We define the maturity-\(h \) GDP-LB “yields” as:

\[
r_{t,h}^* = -\frac{1}{h} \log P_{t,h}^* ,
\]

\(P_{t,h}^* \) is the price of a bond whose nominal payoff (on date \(t + h \)) is \(\propto Y_{t+h} P_{t+h} \).

For \(r_{t,h}^* \) to be comparable to a real yield, the real expected payoff of the GDP-LB has to be 1 (at issuance) \(\Rightarrow \) nominal payoff of

\[
\frac{Y_{t+h} P_{t+h}}{E_t(Y_{t+h}) P_t}.
\]

If no (real) GDP uncertainty, GDP-LB \(\equiv \) ILB, and \(r_{t,h}^* = r_{t,h} \).

Note: Definition of \(r^* \) is purely conventional, not an assumption.

We derive \(F_{h}^*(s_t) \) s.t. \(r_{t,h}^* = F_{h}^*(s_t) \).

GDP-LB pricing
Model, estimation approach and data

Overview

- Estimation approach:
 - Some parameters are calibrated (preference parameters)
 - Some parameters are estimated to fit moments.

- Feasible because
 - tractable formulas for the moments of bonds and stock returns.

- Moments based on:
 - GDP growth, consumption growth, inflation, nominal and real interest rates
 - Proxies of interest-rate conditional variances (based on realized volatilities)
 - Equity price and dividend data
Yield curves

![Graph showing yield curves with labels for various rates and maturity in years.]
Debt-management implications

Debt dynamics

- Debt accumulation process:

\[D_t = D_{t-1} \exp(rate_t) - BS_t \]

\[\Rightarrow d_t = d_{t-1} \exp(rate_t - \pi_t - y_t) - bs_t, \]

where BS = budget surplus and \(d = \) debt-to-GDP ratio \((D/(Y \times P))\).

- \(rate_t \) depends on the bonds issued on date \(t-1 \) by the government:

<table>
<thead>
<tr>
<th>Type of bond</th>
<th>(rate_t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal bond</td>
<td>(i)</td>
</tr>
<tr>
<td>ILB</td>
<td>(r + \pi_t)</td>
</tr>
<tr>
<td>GDP-LB</td>
<td>(r^* + y_t + \pi_t)</td>
</tr>
</tbody>
</table>

- With GDP-LBs, \(d_t \) remains constant (\(\equiv d_0 \)) if \(bs_t \) is set at \(d_0(\exp[r^*_t] - 1) \).

- Limitations:
 (i) \(i, r \) and \(r^* \) are time-varying and (ii) bonds of different maturities are issued.
Debt-management implications

Debt dynamics

debt securities accounting

When (i) and (ii) are taken into account, we obtain the (model-free) equation:

\[d_t = d_{t-1} - bs_t + \]

\[\sum_{h=1}^{H} \sum_{k=1}^{h} iss^n_{t-k,h} \left[e^{k(i_{t-k,h} - y_{t-k,t} - \pi_{t-k,t})} - e^{(k-1)(i_{t-k,h} - y_{t-k,t} - 1 - \pi_{t-k,t} - 1)} \right] + \]

\[\sum_{h=1}^{H} \sum_{k=1}^{h} iss^r_{t-k,h} \left[e^{k(r_{t-k,h} - y_{t-k,t})} - e^{(k-1)(r_{t-k,h} - y_{t-k,t} - 1)} \right] + \]

\[\sum_{h=1}^{H} \sum_{k=1}^{h} iss^*_{t-k,h} \left[e^{k(r^*_{t-k,h} - y^*_{t-k,h})} - e^{(k-1)(r^*_{t-k,h} - y^*_{t-k,h})} \right], \]

(8)

where

- \(iss^n_{t,h} = ISS^n_{t,h} / (Y_t \times P_t) \)

 \(ISS^n_{t,h} \): # of nominal bonds of maturity \(h \) issued at time \(t \) (proceeds),

- \(H \) is the maximal bond maturity,

- \(y_{t-k,t} = \frac{1}{k} \log \left(\frac{Y_t}{Y_{t-k}} \right) \), \(y^e_{t,h} = \frac{1}{h} \log \mathbb{E}_t \left(\frac{Y_{t+h}}{Y_t} \right) \) and \(\pi_{t-k,t} = \frac{1}{k} \log \left(\frac{P_t}{P_{t-k}} \right) \).
Debt-management implications
Debt dynamics

- Eq. (8) reflects that:
 - If only nominal bonds have been issued in the past:
 Inflation or real-GDP growth surprises have a negative effect on d_t.
 - If only ILBs have been issued in the past:
 A GDP growth surprise has a negative effect on d_t.
 - If only GDP-LBs have been issued in the past:
 d_t is immune to date-t inflation or to real-GDP surprises.

- However: d_{t+K} is affected by:
 - future GDP-LB rates $r_{t,h}^*, r_{t+1,h}^*, \ldots, r_{t+K-1,h}^*$
 - future values of nominal and real rates.
Debt-management implications

Debt dynamics

- More generally, d_t’s dynamics depend on:
 (a) debt strategy (choice of issuances), (b) b_s and (c) dynamics of interest rates.

- (a) and (b) are determined by the government.

- Natural simulation exercise:
 - Posit a simple process for b_s,
 - Consider different issuance strategies.
 (same types of bonds issued in the same proportion over time)
 - Strategies defined across two dimensions:
 (i) Type of bonds (nominal, IL, GDP-L) and (ii) maturities.

- Not a normative approach. No maximized criteria.
 [Bohn, 1990], [Angeletos, 2002], [Buera and Nicolini, 2004].

Smoothing performance and implications of using different debt instruments.
Densities of future debt-to-GDP ratios
Initial debt-to-GDP ratio of 100%, $b_{t-1} \equiv -1\%$

Maturity of bonds: 1 year, Horizon: 2 years

Maturity of bonds: 1 year, Horizon: 20 years

Maturity of bonds: 10 years, Horizon: 2 years

Maturity of bonds: 10 years, Horizon: 20 years
Densities of future debt services (as fractions of GDP)
Initial debt-to-GDP ratio of 100%, $b_s \equiv -1\%$
Debt-management implications
Debt dynamics

- We consider the dual problem: how should bs_t evolve so as to keep d_t constant?

- Examples:
 - **Strategy A:**
 $\mathbb{E}(bs_t)$ is high, but small (predictable) changes in bs_t over time.
 - **Strategy B:**
 $\mathbb{E}(bs_t)$ is lower, but process (bs_t) is volatile.
Debt-stabilizing budget surplus

Dispersion

<table>
<thead>
<tr>
<th></th>
<th>Nominal (N)</th>
<th>Inflation-linked (IL)</th>
<th>GDP-linked (GDP-L)</th>
<th>Maturity: 1 year</th>
<th>Maturity: 5 years</th>
<th>Maturity: 10 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average of debt-stabilizing budget surplus (% of GDP)</td>
<td>-3.5</td>
<td>-3.0</td>
<td>-2.5</td>
<td>-2.0</td>
<td>-1.5</td>
<td>-1.0</td>
</tr>
<tr>
<td>Std. dev. of budget surplus (% of GDP)</td>
<td>1.8</td>
<td>2.0</td>
<td>2.2</td>
<td>2.4</td>
<td>2.6</td>
<td></td>
</tr>
</tbody>
</table>
Debt-stabilizing budget surplus
Smoothness
Debt-stabilizing budget surplus
Tail of the distribution

Risk measure: 90th percentile of DSBS

Risk measure: 95th percentile of DSBS
Potential benefits of diversification
International risk-sharing arguments

- Various studies suggest that diversification could reduce GDP-RP
 [Athanasoulis et al., 1999] and [Kamstra and Shiller, 2009].

- GDP-RP could be muted if international business cycles are desynchronised.

- We propose a simple analysis to gauge the potential for GDP risk diversification.
 - Pairwise correlations between GDP surprises for 8 large economies.
 - Low correlations between Brazil, China, India and adv. western economies.
 (scope for diversification)
 - By contrast, strong correlations between adv. western economies.
 (moderate diversification opportunities)

Diversification across adv. western economies unlikely to markedly reduce GDP-RP.
Correlations between 2-year-ahead GDP surprises

Panel (a) – 1980-2018

<table>
<thead>
<tr>
<th></th>
<th>U.S.</th>
<th>U.K.</th>
<th>Germany</th>
<th>France</th>
<th>Canada</th>
<th>Japan</th>
<th>Brazil</th>
<th>China</th>
<th>India</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S.</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U.K.</td>
<td>0.63</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Germ.</td>
<td>0.21</td>
<td>0.19</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>France</td>
<td>0.52</td>
<td>0.41</td>
<td>0.22</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canada</td>
<td>0.75</td>
<td>0.66</td>
<td>−0.02</td>
<td>0.60</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Japan</td>
<td>0.55</td>
<td>0.67</td>
<td>0.67</td>
<td>0.38</td>
<td>0.29</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brazil</td>
<td>−0.27</td>
<td>−0.17</td>
<td>0.51</td>
<td>−0.44</td>
<td>−0.45</td>
<td>0.15</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>China</td>
<td>−0.13</td>
<td>−0.07</td>
<td>−0.12</td>
<td>−0.56</td>
<td>−0.16</td>
<td>−0.27</td>
<td>0.48</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>India</td>
<td>−0.08</td>
<td>0.09</td>
<td>0.11</td>
<td>−0.13</td>
<td>−0.16</td>
<td>−0.01</td>
<td>0.34</td>
<td>0.46</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Panel (b) – 2000-2018

<table>
<thead>
<tr>
<th></th>
<th>U.S.</th>
<th>U.K.</th>
<th>Germany</th>
<th>France</th>
<th>Canada</th>
<th>Japan</th>
<th>Brazil</th>
<th>China</th>
<th>India</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S.</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U.K.</td>
<td>0.95</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Germ.</td>
<td>0.66</td>
<td>0.64</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>France</td>
<td>0.82</td>
<td>0.85</td>
<td>0.81</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canada</td>
<td>0.84</td>
<td>0.81</td>
<td>0.74</td>
<td>0.79</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Japan</td>
<td>0.91</td>
<td>0.92</td>
<td>0.66</td>
<td>0.72</td>
<td>0.68</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brazil</td>
<td>−0.15</td>
<td>−0.10</td>
<td>−0.21</td>
<td>−0.22</td>
<td>0.14</td>
<td>−0.29</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>China</td>
<td>0.02</td>
<td>−0.00</td>
<td>0.06</td>
<td>0.23</td>
<td>0.21</td>
<td>−0.25</td>
<td>0.64</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>India</td>
<td>−0.05</td>
<td>−0.22</td>
<td>0.01</td>
<td>−0.04</td>
<td>0.07</td>
<td>−0.30</td>
<td>0.52</td>
<td>0.81</td>
<td>1.00</td>
</tr>
</tbody>
</table>
Conclusion

• Extension of [Wachter, 2006]'s habit-based model ⇒ pricing of GDP-LB
 ⇒ Extract the term structure of GDP-LB premiums.

• Generalization of the debt accumulation process
 ⇒ Examine the debt-stabilizing properties of GDP-LBs.

• Results:
 (a) Countercyclical GDP-LB yields: embed a RP ∼ 40 bps on avg.
 (b) GDP-LBs make it easier to forecast debt-to-GDP ratios in the SR/MR.
 (c) Unclear ability of GDP-LBs to avoid high debt-to-GDP ratios in the LR.
 (d) Debt-stabilizing budget surplus: More predictable but higher on avg.

Our findings call into question the view that GDP-LBs tame debt.
Risk Premia and Term Premia in General Equilibrium.

Fiscal Policy with Noncontingent Debt and the Optimal Maturity Structure.

GDP-Linked Bonds and Sovereign Default.

The Case for Growth-Indexed Bonds in Advanced Economies Today.
Policy Briefs PB16-2, Peterson Institute for International Economics.

Tax Smoothing with Financial Instruments.

The Case for GDP-Indexed Bonds.
Optimal Maturity of Government Debt without State Contingent Bonds.

Consumption-Based Asset Pricing.

IMF Working Papers 08/109, International Monetary Fund.

Pricing Growth-Indexed Bonds.

Tips from TIPS: The Informational Content of Treasury Inflation-Protected Security Prices.

– Appendix –
Model parametrisation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rate of preference for present</td>
<td>(\delta)</td>
</tr>
<tr>
<td>Risk aversion parameter</td>
<td>(\gamma)</td>
</tr>
<tr>
<td>Consumption growth</td>
<td></td>
</tr>
<tr>
<td>(g_c \times 10^2)</td>
<td>0.550</td>
</tr>
<tr>
<td>(\sigma_\varepsilon \times 10^3)</td>
<td>5.420</td>
</tr>
<tr>
<td>(p \times 10^2)</td>
<td>2.117</td>
</tr>
<tr>
<td>(\eta \times 10^2)</td>
<td>2.496</td>
</tr>
<tr>
<td>GDP growth shocks</td>
<td></td>
</tr>
<tr>
<td>(\rho_y \times 10^3)</td>
<td>1.000</td>
</tr>
<tr>
<td>(\sigma_y \times 10^3)</td>
<td>0.015</td>
</tr>
<tr>
<td>Inflation dynamics</td>
<td></td>
</tr>
<tr>
<td>(\bar{\pi} \times 10^2)</td>
<td>0.697</td>
</tr>
<tr>
<td>(\psi)</td>
<td>0.981</td>
</tr>
<tr>
<td>(\rho_{\pi})</td>
<td>0.039</td>
</tr>
<tr>
<td>(\sigma_{\pi} \times 10^3)</td>
<td>0.661</td>
</tr>
<tr>
<td>Dynamics of consumption ratio</td>
<td></td>
</tr>
<tr>
<td>(\phi \times 10^2)</td>
<td>0.977</td>
</tr>
<tr>
<td>(b \times 10^2)</td>
<td>2.016</td>
</tr>
<tr>
<td>Growth rate of dividends</td>
<td></td>
</tr>
<tr>
<td>(\text{div} \times 10^2)</td>
<td>0.550</td>
</tr>
<tr>
<td>(\rho_d)</td>
<td>2.000</td>
</tr>
<tr>
<td>(\sigma_d \times 10^3)</td>
<td>0.031</td>
</tr>
</tbody>
</table>
Fit of moments

<table>
<thead>
<tr>
<th>Moment description</th>
<th>Data</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean of GDP growth rate Δy_t</td>
<td>10^2</td>
<td>0.65</td>
</tr>
<tr>
<td>Mean of consumption growth rate Δc_t</td>
<td>10^2</td>
<td>0.47</td>
</tr>
<tr>
<td>Mean of inflation π_t</td>
<td>10^2</td>
<td>0.54</td>
</tr>
<tr>
<td>Std. dev. of GDP growth rate Δy_t</td>
<td>10^2</td>
<td>0.57</td>
</tr>
<tr>
<td>Std. dev. of consumption growth rate Δc_t</td>
<td>10^2</td>
<td>0.48</td>
</tr>
<tr>
<td>Std. dev. of inflation π_t</td>
<td>10^2</td>
<td>0.24</td>
</tr>
<tr>
<td>Mean of short-term nom. rate</td>
<td>10^2</td>
<td>2.32</td>
</tr>
<tr>
<td>Mean of 10-year nom. rate</td>
<td>10^2</td>
<td>5.43</td>
</tr>
<tr>
<td>Mean of 30-year nom. rate</td>
<td>10^2</td>
<td>5.77</td>
</tr>
<tr>
<td>Std. dev. of short-term nom. rate</td>
<td>10^2</td>
<td>2.17</td>
</tr>
<tr>
<td>Std. dev. of 10-year nom. rate</td>
<td>10^2</td>
<td>2.33</td>
</tr>
<tr>
<td>Std. dev. of 30-year nom. rate</td>
<td>10^2</td>
<td>1.95</td>
</tr>
<tr>
<td>Auto-correl. of short-term nom. rate</td>
<td></td>
<td>0.99</td>
</tr>
<tr>
<td>Auto-correl. of 10-year nom. rate</td>
<td></td>
<td>0.99</td>
</tr>
<tr>
<td>Auto-correl. of 30-year nom. rate</td>
<td></td>
<td>0.98</td>
</tr>
<tr>
<td>Mean of slope of the nom. yd curve (3m-30yrs)</td>
<td>10^2</td>
<td>2.45</td>
</tr>
<tr>
<td>Std. dev. of slope of the nom. yd curve (3m-30yrs)</td>
<td>10^2</td>
<td>1.43</td>
</tr>
</tbody>
</table>
Fit of moments (2/2)

<table>
<thead>
<tr>
<th>Moment description</th>
<th>Data</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean of short-term real rate</td>
<td>10^2</td>
<td>0.14</td>
</tr>
<tr>
<td>Mean of 2-year real rate</td>
<td>10^2</td>
<td>0.08</td>
</tr>
<tr>
<td>Mean of 10-year real rate</td>
<td>10^2</td>
<td>1.67</td>
</tr>
<tr>
<td>Std. dev. of short-term real rate</td>
<td>10^2</td>
<td>1.95</td>
</tr>
<tr>
<td>Std. dev. of 2-year real rate</td>
<td>10^2</td>
<td>1.36</td>
</tr>
<tr>
<td>Std. dev. of 10-year real rate</td>
<td>10^2</td>
<td>1.29</td>
</tr>
<tr>
<td>Auto-correl. of short-term real rate</td>
<td></td>
<td>0.81</td>
</tr>
<tr>
<td>Auto-correl. of 2-year real rate</td>
<td></td>
<td>0.86</td>
</tr>
<tr>
<td>Auto-correl. of 10-year real rate</td>
<td></td>
<td>0.98</td>
</tr>
<tr>
<td>Mean of slope of the real yd curve (3m-10yrs)</td>
<td>10^2</td>
<td>2.01</td>
</tr>
<tr>
<td>Std. dev. of slope of the real yd curve (3m-10yrs)</td>
<td>10^2</td>
<td>1.25</td>
</tr>
<tr>
<td>Mean of condi. var. of the short-term nom. rate</td>
<td>10^5</td>
<td>1.39</td>
</tr>
<tr>
<td>Mean of condi. var. of the 30-year nom. rate</td>
<td>10^5</td>
<td>2.22</td>
</tr>
<tr>
<td>Mean of condi. var. of the 10-year real rate</td>
<td>10^5</td>
<td>1.33</td>
</tr>
<tr>
<td>Average expected excess return (annualized)</td>
<td>10^2</td>
<td>7.78</td>
</tr>
<tr>
<td>Average cond. volat. of stock return (annualized)</td>
<td>10^2</td>
<td>15.69</td>
</tr>
<tr>
<td>Average P/D</td>
<td></td>
<td>40.93</td>
</tr>
<tr>
<td>Std. dev. of P/D</td>
<td></td>
<td>17.32</td>
</tr>
</tbody>
</table>
Consumption shocks (ν_t) p.d.f.

- ν_t is drawn from a mixture of Gaussian distributions. Specifically:
 \[
 \nu_t = B_t W_{1,t} + (1 - B_t) W_{2,t},
 \]
 where $B_t \sim B(p)$, $W_{1,t} \sim \mathcal{N}(-\eta(1-p), \sigma_{\nu}^2)$ and $W_{2,t} \sim \mathcal{N}(\eta p, \sigma_{\nu}^2)$.

- Alternatively, we have:
 \[
 \nu_t = -(B_t - p) \eta + \varepsilon_{\nu}' , \quad \varepsilon_{\nu}' \sim i.i.d. \mathcal{N}(0, \sigma_{\nu}^2).
 \]

- p, σ_{ν} and η are calibrated so as to match the first three moments of $\log(C_t/C_{t-4})$.
Specification of $\lambda(s_t)$

- S_t (and therefore X_t by eq. 5) deterministically depends on consumption:

$$s_{t+1} = \log S_{t+1} = (1 - \phi)\bar{s} + \phi s_t + \lambda(s_t)(c_{t+1} - \mathbb{E}_t(c_{t+1}))$$

$$\lambda(s_t) = \begin{cases}
\frac{1}{\exp(\bar{s})} \sqrt{1 - 2(s_t - \bar{s})} - 1 & \text{if } s_t \leq s_{\max} \\
0 & \text{otherwise.}
\end{cases}$$

where $s_{\max} = \bar{s} + \frac{1}{2}(1 - \exp(\bar{s})^2)$, which ensures that $\lambda(s_t) \geq 0$, and with with

$$\bar{s} = \log \left(\sqrt{\text{Var}(\nu)} \frac{\gamma}{1 - \phi - b/\gamma} \right).$$

- This specification notably implies that habit is predetermined at the steady state. Using the notation $x_t = \log(X_t)$, eq. (9) indeed implies that $\frac{dx_{t+1}}{dc_{t+1}} = 1 - \frac{\lambda(s_t)}{\exp(-s_t) - 1}$.

\Rightarrow Habit is predetermined at the steady state if $\lambda(\bar{s}) = \frac{1}{\exp(\bar{s})} - 1$, which is mechanically the case if $\lambda(s_t)$ is specified as in eq. (9).
At each date t, \tilde{s}_t is the discretised value of s_t: $s_t \approx \tilde{s}_t = \mu' z_t$.

The dynamics of \tilde{s}_t (i.e. of z_t) is defined by the p_{ij}’s, where $p_{ij} = \mathbb{P}(z_{t+1} = e_j | z_t = e_i)$.

p_{ij} defined as the proba. that $s_{t+1} \in \left[\frac{1}{2} (\mu_{j-1} + \mu_j), \frac{1}{2} (\mu_j + \mu_{j+1}) \right]$ given that $s_t = \mu_i$.

That is (using $\mu_0 = -\infty$ and $\mu_{N+1} = +\infty$ and eq. 9):

$$p_{ij} = \mathbb{P}(\tilde{s}_{t+1} = \mu_j | \tilde{s}_t = \mu_i) = \mathbb{P}(z_{t+1} = e_j | z_t = e_i)$$

$$= \mathbb{P}\left(s_{t+1} \in \left[\frac{1}{2} (\mu_{j-1} + \mu_j), \frac{1}{2} (\mu_j + \mu_{j+1}) \right] | s_t = \mu_i \right)$$

$$= f\left(\frac{1}{\lambda_i} \left[\frac{1}{2} (\mu_j + \mu_{j+1}) - (1 - \phi)\bar{s} - \phi \mu_i \right] \right)$$

$$- f\left(\frac{1}{\lambda_i} \left[\frac{1}{2} (\mu_{j-1} + \mu_j) - (1 - \phi)\bar{s} - \phi \mu_i \right] \right).$$
• $\Pi = \{p_{ij}\}_{i,j \in [1,N]^2}$ is the matrix of transition probabilities:

$$
\begin{align*}
\begin{array}{ccccccc}
\mu_1 & \mu_2 & \cdots & \mu_j & \cdots & \mu_N \\
\uparrow & \uparrow & \cdots & \uparrow & \cdots & \uparrow \\
\end{array}
\end{align*}
$$

$$
\begin{array}{cccc}
\mu_1 & \mu_2 & \cdots & \mu_j & \cdots & \mu_N \\
\uparrow & \uparrow & \cdots & \uparrow & \cdots & \uparrow \\
\end{array}
\begin{pmatrix}
p_{11} & p_{12} & \cdots & \cdots & p_{1N} \\
p_{21} & p_{22} & \cdots & \cdots & p_{2N} \\
\vdots & \vdots & \ddots & \cdots & \vdots \\
\vdots & \vdots & \cdots & p_{ij} & \cdots \\
p_{N1} & p_{N2} & \cdots & \cdots & p_{NN} \\
\end{pmatrix}.
\end{align*}
$$

• We also introduce vector λ, whose i^{th} component is $\lambda_i \equiv \lambda(\mu_i)$.
• The (discretised) s.d.f. $M_{t,t+1}$ (see eq.6) is given by

$$\exp \left(\log(\delta) - \gamma \mathbb{E}(\Delta c) - \gamma \left[\mu'(z_{t+1} - z_t) + \frac{1}{\lambda' z_t} \left(\mu' z_{t+1} - (1 - \phi) \bar{s} - \phi \mu' z_t \right) \right] \right).$$

• The risk-neutral dynamics of z_t is defined through:

$$\mathbb{E}_t^Q(z_{t+1}) = \mathbb{E}_t \left(\frac{M_{t,t+1}}{\mathbb{E}_t M_{t,t+1}} z_{t+1} \right)$$

$$= \left(\exp \left(-\gamma \left\{ 1 + \frac{1}{\lambda} \right\} \mu' \right) \mathbb{E}_t \left(\exp \left(-\gamma \left\{ 1 + \frac{1}{\lambda} \right\} \mu' \right) \odot \Pi \right) 11' \right)^z.$$

Q, is the risk-neutral equivalent of $\Pi = \{p_{i,j}\}_{i,j \in [1,N]}$, the matrix of (physical) transition probabilities (see previous slide).
Specific vectorial notations

We use specific vectorial notations. If $M = \{m_{i,j}\}_{(i,j)\in [1,n] \times [1,p]}$:

- $\frac{1}{M} \equiv \left\{ \frac{1}{m_{i,j}} \right\}_{(i,j)\in [1,n] \times [1,p]}$
- $\exp M \equiv \{\exp m_{i,j}\}_{(i,j)\in [1,n] \times [1,p]}$
- $\log M \equiv \{\log m_{i,j}\}_{(i,j)\in [1,n] \times [1,p]}$
- $\sqrt{M} \equiv \{\sqrt{m_{i,j}}\}_{(i,j)\in [1,n] \times [1,p]}$
- If α is a scalar, $M + \alpha \equiv \{\alpha + m_{i,j}\}_{(i,j)\in [1,n] \times [1,p]}$

Let’s denote by μ_r the vector containing the discretised values of the real short-term rate, i.e. $r_t = \mu'_r z_t$. We have:

$$
\mu_r = -\log(\delta) + \gamma g_c - \gamma (1 - \phi)\bar{s} \frac{1}{\lambda} - \gamma \mu - \gamma \phi \frac{\mu}{\lambda} - \log \left[\left(\prod \circ \exp \left[-\gamma \mu \left(1 + \frac{1}{\lambda} \right) \right] \right) \mathbf{1} \right].
$$
GDP-LB Pricing

Date-\(t \) price of a maturity-\(h \) bond indexed on nominal GDP:

\[
P_{t,h}^* = (H^h 1)' z_t,
\]

with

\[
H = \frac{1}{\mathbb{E} \exp(\rho_y \nu)} \left(\exp \left(\left(-\mu_r - \frac{(1 - \phi) \rho_y \bar{S}}{\lambda} - \rho_y \phi \frac{\mu}{\lambda} \right) 1' + \rho_y \frac{\mu'}{\lambda} \right) \right) \odot Q.
\]

ILB pricing

Yield of a zero-coupon Inflation-Linked bond of maturity \(h \) is given by

\[
r_{t,h} = -\frac{1}{h} \log P_{t,h}^r,
\]

where \(P_{t,h}^r \), the date-\(t \) price of a maturity-\(h \) zero-coupon ILB is given by:

\[
P_{t,h}^r = \left(\{ Q \times \text{Diag}[\exp(-\mu_r)] \}^{h-1} \exp(-\mu_r) \right)' z_t.
\]
Nominal bonds

Let's denote by $P_{t,h}^n$ the date-t price of a zero-coupon nominal bond of maturity h. We have

$$P_{t,h}^n = \exp(-b_h \pi_t) F_{h}^{n'} z_t,$$

where F_h^n and b_h are computed recursively using:

$$
\begin{align*}
F_h^n &= -(b_{h-1} + 1) \bar{\pi} (1 - \psi) + \frac{(b_{h-1} + 1)^2 \sigma^2}{2} \\
&+ \left(\exp \left[\left(-\mu_r + \rho \pi (b_{h-1} + 1) \frac{(1 - \phi) \bar{s}}{\lambda} + \rho \pi (b_{h-1} + 1) \phi \frac{\mu}{\lambda} \right) 1' - \rho \pi (b_{h-1} + 1) \frac{1}{\lambda} \mu' \right] \circ Q \right) F_{h-1}^n \\
b_h &= (b_{h-1} + 1) \psi,
\end{align*}
$$

with the initial conditions $b_0 = 0$ and $F_0^n = 1$.

Nominal-bond yields-to-maturity are further obtained as:

$$i_{t,h} = \frac{b_h}{h} \pi_t - \frac{1}{h} \log(F_h^n)' z_t.$$
Accounting concept of debt

- Eq. (8) is implicitly based on an accounting concept of debt.
- “Nominal valuation of debt securities”: the debt outstanding reflects
 - the sum of funds originally advanced,
 - less any repayments,
 - plus any accrued interest.

[Handbook of Securities Statistics (2015), BIS/ECB/IMF]

- Accrued interest: “debtor approach”, i.e. interest defined from the perspective of the issuer of debt securities:
 Accrued interest based on market interest rate at the time of issuance; indexations based on observations.
 See next slide, with $ky_{t-k,t} = \log \left(\frac{Y_t}{Y_{t-k}} \right)$, $hy_{t,h} = \log \mathbb{E}_t \left(\frac{Y_{t+h}}{Y_t} \right)$ and $k\pi_{t-k,t} = \log \left(\frac{P_t}{\bar{P}_{t-k}} \right)$.

Zero coupon accounting

Nominal ZC bond:

$$100 \cdot 100 \exp(i_{t,h}) \cdot 100 \exp(ki_{t,h}) \cdot 100 \exp(hi_{t,h})$$

$$t \quad t+1 \quad \ldots \quad t+k \quad \ldots \quad t+h$$

Inflation-Linked ZC bond:

$$100 \cdot 100 \times \exp(r_{t,h} + \pi_{t,t+1}) \cdot 100 \times \exp(kr_{t,h} + k\pi_{t,t+k}) \cdot 100 \times \exp(hr_{t,h} + h\pi_{t,t+h})$$

$$t \quad t+1 \quad \ldots \quad t+k \quad \ldots \quad t+h$$

GDP-Linked ZC bond:

$$100 \cdot 100 \times \exp(r_{t,h} + \pi_{t,t+1}) \times \exp(y_{t,t+1} - y_{t,h}^e) \cdot 100 \times \exp(kr_{t,h} + k\pi_{t,t+k}) \times \exp(k(y_{t,t+k} - y_{t,h}^e)) \cdot 100 \times \exp(hr_{t,h} + h\pi_{t,t+h}) \times \exp(h(y_{t,t+h} - y_{t,h}^e))$$

$$t \quad t+1 \quad \ldots \quad t+k \quad \ldots \quad t+h$$
Debt-management implications

Debt dynamics

- We also have:

\[
\sum_{h=1}^{H} iss_{t,h}^n + iss_{t,h}^r + iss_{t,h}^* = -bs_t +
\]

\(=: iss_t\), debt issued on date \(t\)

\[
\sum_{h=1}^{H} iss_{t-h,h}^n e^{h[t_{t-h,h}-\gamma_{t-h,t}-\pi_{t-h,t}]} + iss_{t-h,h}^r e^{h[r_{t-h,h}-\gamma_{t-h,t}]} + iss_{t-h,h}^* e^{h[r^*_{t-h,h}-\gamma^*_{t-h,h}]}.
\]

Debt maturing on date \(t\)

- Using eqs (8) and (10), one can simulate \(\{d_t\}\) given

(i) paths for macroeconomic variables and interest rates,

(ii) how \(bs_t\) is determined and

(iii) an issuance strategy (how \(iss_t\) is divided into \(iss_{t,h}^n\), \(iss_{t,h}^r\) and \(iss_{t,h}^*\)).
Fiscal fatigue

• Simple case: only one-period bonds issued; \(d_t \) is the single state variable; no \(\pi_t \).
• \(bs_t \) increases to reduce debt when it is high, but “fiscal fatigue” at some point (\(\gamma \)):
 \[
 bs_t = \min(\alpha + \beta d_{t-1}, \gamma)
 \]
• Debt dynamics:
 \[
 d_t = (1 - def_t) d_{t-1} \exp(rate_t - \Delta y_t) - bs_t + \varepsilon_t.
 \]
• Govies: Risk-neutral investors get 100% if no default and 0 if default, hence:
 \[
 \exp(-rate_t) = \exp(-r) \times (1 - p(d_t)),
 \]
 where \(p(d_t) \) is the probability of default and \(r \) is the real risk-free rate.
• \(\exists \bar{d} \) (debt limit) such that \(def_t \iff d_t \geq \bar{d} \). Function \(p(.) \) must satisfy:
 \[
 p(d) = \mathbb{P}\left(\frac{1}{1 - p(d)} d \exp(r - \Delta y_t) - \min(\alpha + \beta d, \gamma) + \varepsilon_t > \bar{d} \right)
 \]
 (fixed-point problem).
Limitations of GDP-LB studies

(i) Simulations rely on constant yields

- Several papers rely on Monte-Carlo simulations to illustrate the budget smoothing properties of GDP-LBs.

- Though these exercises take into account the indexation of the coupons, they abstract from the state-contingency of bond prices (i.e. \(i, r \) and \(r^* \) are cst).

- Examples of potential problems:
 - If part of the inflation fluctuations is predictable, \(i_{t-1} \) is correlated to \(\pi_t \), reducing the variability of \(i_{t-1} - \pi_t \).
 - If GDP yields tend to be higher in low-growth contexts (say), the government then has to issue relatively more GDP-LBs to meet a given funding requirement (+ non-linearities if persistent bad state).

\[\Rightarrow \] Difficult to appropriately analyse the smoothing properties of these bonds without resorting to a non-trivial asset-pricing dynamic model.
Limitations of GDP-LB studies

(ii) A single (short-term) maturity is considered

- Studies investigating the debt smoothing properties of GDP-LBs consider a single (short-term) maturity.
- However, Treasuries issue large amounts of medium- to long-term bonds.
- As soon as \(i, r \) and \(r^* \) are not constant, the fact that short-term GDP-LBs are better than standard short-term bonds to stabilize the debt-to-GDP ratio does not necessarily imply that the same holds true for long-term bonds.
Limitations of GDP-LB studies

(iii) Unclear GDP-LB pricing

- Several studies use the (market) CAPM to assess the GDP-LB risk premiums.

(*) \(\beta \)'s are obtained by regressing GDP growth on market index returns. Risk premiums are computed as \(\beta \times \) market excess return.

- This approach assumes that the projection of the s.d.f. on stock returns is sufficient to price all GDP risk.

In other words, approach (*) implicitly supposes that the partial correlation between \(\Delta y_t \) & \(\Delta c_t \), controlling for \(s_t \), is zero. This may not be the case [Roll, 1977].

<table>
<thead>
<tr>
<th>Study</th>
<th>R.P.</th>
<th>Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Barr et al., 2014]</td>
<td>35 bps</td>
<td>CCAPM</td>
</tr>
<tr>
<td>[Kamstra and Shiller, 2009]</td>
<td>150 bps</td>
<td>CAPM</td>
</tr>
<tr>
<td>[Borensztein and Mauro, 2004]</td>
<td>40 bps</td>
<td>CAPM</td>
</tr>
<tr>
<td>[Blanchard et al., 2016]</td>
<td>100 bps</td>
<td>NA</td>
</tr>
<tr>
<td>[Pisani-Ferry et al., 2013]</td>
<td>150 bps</td>
<td>NA</td>
</tr>
<tr>
<td>[Fratzscher et al., 2014]</td>
<td>0 bp</td>
<td>Risk-neutral investors</td>
</tr>
<tr>
<td>[Chamon and Mauro, 2006]</td>
<td>0 bp</td>
<td>Risk-neutral investors</td>
</tr>
</tbody>
</table>

Note: These studies consider short-term debt instruments only.
Yields p.d.f.

Maturity: 2 years

\[\begin{array}{cccccc}
0.00 & 0.02 & 0.04 & 0.06 & 0.08 \\
\end{array} \]

GDP-LB yields
ILB yields

Maturity: 10 years

\[\begin{array}{cccccc}
0.00 & 0.02 & 0.04 & 0.06 & 0.08 \\
\end{array} \]

GDP-LB yields
ILB yields

Note: Vertical lines indicate means.
Sensitivity of yields to surplus

![Graph showing sensitivity of yields to surplus](image)

- **Consumption surplus (S_t)**
- **Annualized yield to maturity**
- **GDP-LB (1 year)**
- **GDP-LB (10 years)**
- **ILB (1 year)**
- **ILB (10 years)**
- **p.d.f. of consumption surplus (S_t)**
Simulated paths of debt-to-GDP ratios
Initial debt-to-GDP ratio of 100%, $b_{st} \equiv -1\%$
Additional issues associated with GDP-LBs

- Novelty premiums.
 [Chamon et al., 2008]: Argentine GDP warrants, 500 bps.
 [D'Amico et al., 2018]: TIPS, 100 bps (“shadow real yields”, ATSM).

- Adverse selection: First issuers could be suspected to hide weak fundamentals.

- Significant issuances could lead to a reduction in the supply of (safe) conventional assets (that markets need).

- Significant issuances could transfer excessive risk to the private sector (increase in business- or financial-cycles volatility + worsening sovereign-bank nexus).

- Risk of moral hazard.
 - Lower incentives for the government to implement growth policies
 - Higher incentives for issuers to manipulate data in their favour.
The sources of risk premiums: Payoff exposures

- Two-year investment.
- Three possible types of (zero-coupon) bonds: Inflation-Linked (IL), nominal, GDP-L.
- Expected real payoffs:

<table>
<thead>
<tr>
<th>Type of bond</th>
<th>Expected real payoff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inflation-linked bond with (real) face value of 100</td>
<td>100</td>
</tr>
<tr>
<td>Nominal bond with (nominal) face value of 100</td>
<td>$\mathbb{E} \left[\frac{100}{(1 + \pi_{t,t+2})^2} \right]$</td>
</tr>
<tr>
<td>GDP-LB with “face value” of 100</td>
<td>$\mathbb{E} \left[100 \times (1 + y_{t,t+2})^2 \right]$</td>
</tr>
</tbody>
</table>

$\pi_{t,t+2}$ (resp. $y_{t,t+2}$): annualized growth rate of price index (GDP) between t and $t + 2$.

- Next slide: ratio between realized and expected payoffs of 1-year bonds with unit face value (expectations measured using US SPF).
Choosing the model

- Model has to be flexible enough to capture moments of observed data (term structures of nominal and real yields, GDP growth, inflation).
- Model must feature a sufficient amount of structure for it to generate realistic GDP-LB prices.
 - GDP-LB share important features with stocks: Higher (lower) payoffs in expansions (recessions).
 - Dividends often modelled as levered consumption, i.e. $Div_t = C_t^\lambda$ as in [Abel, 1999, Campbell and Cochrane, 1999, Campbell, 2003].
 - Calibration includes stock-based data moments.
- Chosen model and estimation approach:
 - Extended version of [Wachter, 2006].
 - Key ingredient: consumption habits.
 - Closed-form (approximated) bond pricing formula.