Structural reforms during the Greek economic adjustment programme

The amalgamation of municipalities

Benos N., Conti M., Ferraresi M., Karagiannis S., Papazoglou M.

Speaker: Michail Papazoglou

CRETE 2022, 14/07/2022
Introduction
Introduction

➢ In the last 50 years, municipalities across Europe have faced different economic and government budget challenges that put pressure on their performance in terms of efficiency, effectiveness, and quality of public services.

1. An **increase in the demand for the provision of (specialized) public goods** coupled together with a greater accountability and transparency

2. The **fulfilment of the EU requirements for fiscal discipline on public finance**, imposed by central governments to local governments, has led municipalities to reduce their expenditures

➢ To deal with these issues, central governments have been experimenting with institutional tools, such as **amalgamation of municipalities and intermunicipal cooperation**.
Aim and objective

➢ Shed fresh light to this debate by investigating the municipal amalgamation in Greece, that took place in 2010.

 • As part of the economic adjustment programme of the country, this reform aimed to improve the public financial management and administration of local governments.

➢ We focus on the amalgamation effect on current costs and investments, before and after the merger.

Objective:

1. Identify the impact of the amalgamation process

2. Control for the various potential sources of biases due to heterogeneity
Relevant Literature

Amalgamated municipalities lower per capita expenditure
e.g. after amalgamation relative to non-amalgamated ones
- Israel (Reingewertz, 2012)
- Germany (Blesse and Baskaran, 2016)
- Sweden (Hanes, 2015)

Municipalities’ spending higher in merged municipalities
e.g.
- Finland (Moisio and Uusitalo, 2013)
- Germany (Roesel, 2017)
- The Netherlands (Allers and Geertsema, 2016)
- Brazil (Lima and Silveira Neto, 2018)
Findings

1. Significant effects on current costs only when we control for region-by-year fixed effects as well as vertical transfers.

2. Negative and robust effect of amalgamation on investment, as the amalgamation process led to a decrease in the (log of) per capita investment in the range of 11 to 20%.

3. Statistically significant decrease in local GDP; The reduction in investment has been achieved by significantly deteriorating local economic conditions.
Institutional framework
History of local administrative structure in Greece

Pre amalgamation organization
- 1974 to 1998
 441 municipalities and 5382 communities

Kapodistrias reform
- 1999 to 2010
 914 municipalities and 120 communities

Kallikratis reform
- 2011 to today
 325 municipalities

Current NUTS classification in Greece

- NUTS 1: 13 Regions
- NUTS 2: 52 Prefectures (Regional Units)
- NUTS 3: 325 Municipalities
- LAU 1: 13 Regions
Data
Average Current Costs before and after the amalgamation process

Average Current Costs per capita before the amalgamation (2005-2009)

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Min.</th>
<th>Mean</th>
<th>Max.</th>
<th>Std. Dev.</th>
<th>Skewness</th>
<th>Kurtosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Costs per capita before</td>
<td>105.97</td>
<td>774.30</td>
<td>5,943.80</td>
<td>653.70</td>
<td>4.19</td>
<td>24.55</td>
</tr>
<tr>
<td>Current Costs per capita after</td>
<td>249.91</td>
<td>845.40</td>
<td>11,326.27</td>
<td>813.24</td>
<td>7.88</td>
<td>89.29</td>
</tr>
</tbody>
</table>

Average Current Costs per capita after the amalgamation (2011-2018)
Average Investments before and after the amalgamation process

Average Investments per capita before the amalgamation (2005-2009)

<table>
<thead>
<tr>
<th>Investments per capita before</th>
<th>Min.</th>
<th>Mean</th>
<th>Max.</th>
<th>Std. Dev.</th>
<th>Skewness</th>
<th>Kurtosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investments per capita after</td>
<td>16.87</td>
<td>449.25</td>
<td>3,969.18</td>
<td>520.21</td>
<td>3.10</td>
<td>12.38</td>
</tr>
</tbody>
</table>

Average Investments per capita after the amalgamation (2011-2018)

<table>
<thead>
<tr>
<th>Investments per capita after</th>
<th>Min.</th>
<th>Mean</th>
<th>Max.</th>
<th>Std. Dev.</th>
<th>Skewness</th>
<th>Kurtosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investments per capita after</td>
<td>19.50</td>
<td>448.10</td>
<td>5,740.95</td>
<td>585.78</td>
<td>4.89</td>
<td>33.42</td>
</tr>
</tbody>
</table>
Demographic and socioeconomic data

- Population
- Working age population
- Total number of births
- Total number of deaths
- People in/not in the labor force (% 15-74)
- Employed/Unemployed people (% in the labor force)
- Young employed persons (% employment and % pop_15_24)
- Transfers (Revenues from grants)
- Transfers (Grants to cover operating costs)
- Transfers (Grants for investments)

Also, GDP per capita at NUTS 2 and NUTS3 level
Satellite imagery to proxy socioeconomic variables (LAU1)

Data source
- Harmonized yearly dataset produced by Li, Zhou, Zhao, & Zhao (2020) using the DMSP/VIIRS night-time satellite images

Target
- Nighttime light activity to proxy GDP per capita

Methodology
- Fixed effect model with year and regional (NUTS II) fixed effects and clustered standard errors at regional level (Henderson et al., 2012).

Final Indicator
- GDP per capita at LAU1 level
Empirical Strategy
Basic model

\[Y_{it} = \mu_i + \tau_t + \gamma Amalgamation_{it} + \beta x_{it} + \epsilon_{it} \]

- \(Y_{it} \): log of the per capita expenditure (current costs or investments)
- \(\mu_i \): municipal fixed effects
- \(\tau_t \): year fixed effects
- \(Amalgamation \): dummy variable - one if the municipality has been amalgamated and zero otherwise
- \(x_{it} \): control variables
- \(\epsilon_{it} \): error term clustered at the municipal level

Differential growth paths for Greek regions?

➢ Region (NUTS II)-by-year fixed effects
Propensity matching score

- **Why?**
 - Amalgamated municipalities **might be different than non-amalgamated**. Thus, bias.

- **How?**
 - Non-amalgamated with same pre-treatment characteristics to amalgamated (propensity score (PS) of being amalgamated) using a logit regression model.
 - **Dependent variable**: dummy (1 amalgamated, 0 otherwise)
 - **Independent variable**: population, per-capita surface, working age population, labor force participation rate, unemployment rate, youth unemployment rate, GDP per-capita (all in NUTS III level)

 - Re-estimate basic model using information only on the observations that lie on the common support (Sianesi, 2004; Smith & Todd, 2005)
The common trend assumption

\[Y_{it} = \mu_i + \tau_t + \sum_{\pi=2}^{5} \gamma_{\pi} \text{Amalgamation}_{i,\pi} + \sum_{\tau=0}^{7} \gamma_{\tau} \text{Amalgamation}_{i,\tau} + \beta x_{it} + \epsilon_{it} \]

- **Why?**
 - Same trends of amalgamated and non-amalgamated municipalities in the absence of the amalgamation. If the trends are the same, the interactions not statistically significant (Autor, 2003)

- **How?**
 - Interactions of time dummies and the exposure indicator for pre-treatment periods
Robustness checks - Placebo test

Why?

What if amalgamated municipalities had already a different path of expenditure even before the amalgamation?

How?

Assume that the amalgamation occurred 1, 2 and 3 year(s) earlier than the true data and replicate the analysis.
Robustness check - Outliers

Why?

➢ What if extreme values affect the results?

How?

➢ Trimming values (1% - 5%)
Heterogeneous effects - Permanence

$$Y_{it} = \mu_i + \tau_t + Amalgamation_{it} \times (\gamma + \delta_{\text{permanence}_t} + \lambda_{\text{permanence}_t^2}) + \beta x_{it} + \epsilon_{it}$$

- **Why?**
 - What if there has been a heterogeneous response according to the time since the amalgamation occurred?

- **How?**
 - Create a continuous variable, permanence
 - measures the time since the amalgamation took place (1 to 8 years).
 - Create quadratic term (permanence^2), allowing the effect to be a non-linear function of time.
Results
Baseline results - Current Costs

<table>
<thead>
<tr>
<th>Dep. Variables</th>
<th>Current costs</th>
<th></th>
<th>Current costs matching</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
</tr>
<tr>
<td>Amalgamation</td>
<td>0.056</td>
<td>0.030</td>
<td>-0.024</td>
<td>-0.101**</td>
</tr>
<tr>
<td></td>
<td>(0.048)</td>
<td>(0.042)</td>
<td>(0.052)</td>
<td>(0.042)</td>
</tr>
<tr>
<td>Observations</td>
<td>4,136</td>
<td>4,136</td>
<td>4,136</td>
<td>3,982</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.797</td>
<td>0.805</td>
<td>0.818</td>
<td>0.853</td>
</tr>
<tr>
<td>Controls</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Transfers</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Municipal FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Year FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Region * year FE</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Baseline results - Investments

<table>
<thead>
<tr>
<th>Dep. Variables</th>
<th>Investments</th>
<th>Investments matching</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>Amalgamation</td>
<td>-0.128</td>
<td>-0.168*</td>
</tr>
<tr>
<td></td>
<td>(0.095)</td>
<td>(0.094)</td>
</tr>
<tr>
<td>Observations</td>
<td>3,834</td>
<td>3,834</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.779</td>
<td>0.782</td>
</tr>
<tr>
<td>Controls</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Transfers</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Municipal FE</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Year FE</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Region * year FE</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>
The common trend assumption
The common trend assumption

➢ Current Costs (i) Pre-amalgamated: No difference. (ii) Post-amalgamated: higher 2 and 3 years after

➢ Investments (i) Pre-amalgamated : No difference. (ii) Post-amalgamated period: significant reduction after 6 and 7 years

➢ Overall, no evidence against the presence of a common trend between treated and control units
Robustness check - Placebo test

<table>
<thead>
<tr>
<th>Dep. Variables</th>
<th>Current costs</th>
<th>Investments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>Amalgamation fake 2007</td>
<td>-0.065</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.059)</td>
<td></td>
</tr>
<tr>
<td>Amalgamation fake 2008</td>
<td></td>
<td>-0.021</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.041)</td>
</tr>
<tr>
<td>Amalgamation fake 2009</td>
<td></td>
<td>-0.005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.035)</td>
</tr>
<tr>
<td>Observations</td>
<td>1,551</td>
<td>1,551</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.761</td>
<td>0.760</td>
</tr>
<tr>
<td>Controls</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Municipal FE</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Year FE</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Robustness check - Outliers

Panel A: Current Costs

<table>
<thead>
<tr>
<th></th>
<th>Trimming 1%</th>
<th></th>
<th>Trimming 5%</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
</tr>
<tr>
<td>Amalgamation</td>
<td>0.081*</td>
<td>0.059*</td>
<td>-0.032</td>
<td>0.041</td>
</tr>
<tr>
<td></td>
<td>(0.042)</td>
<td>(0.035)</td>
<td>(0.041)</td>
<td>(0.035)</td>
</tr>
<tr>
<td>Observations</td>
<td>4,054</td>
<td>4,054</td>
<td>4,054</td>
<td>3,906</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.852</td>
<td>0.865</td>
<td>0.872</td>
<td>0.893</td>
</tr>
<tr>
<td>Controls</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Transfers</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Municipal FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Year FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Region * year FE</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

Panel B: Investments

<table>
<thead>
<tr>
<th></th>
<th>Trimming 1%</th>
<th></th>
<th>Trimming 5%</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
</tr>
<tr>
<td>Amalgamation</td>
<td>-0.157*</td>
<td>-0.204***</td>
<td>-0.152*</td>
<td>-0.233***</td>
</tr>
<tr>
<td></td>
<td>(0.086)</td>
<td>(0.085)</td>
<td>(0.092)</td>
<td>(0.082)</td>
</tr>
<tr>
<td>Observations</td>
<td>3,758</td>
<td>3,758</td>
<td>3,758</td>
<td>3,756</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.793</td>
<td>0.795</td>
<td>0.811</td>
<td>0.855</td>
</tr>
<tr>
<td>Controls</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Transfers</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Municipal FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Year FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Region * year FE</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>
Heterogeneous effects - Permanence

Current Costs

Investments

Years after the merger
Heterogeneous effects – Current costs specific items

- **Specific Items**
 - Personnel costs: staff fees and expenses and the remuneration of elected and third parties cost categories.
 - Financial costs: taxes-fees, payments for public credit service and other expenses.
 - Third parties’ costs: third party benefits and payments - transfers to third parties.
 - Other costs: other overheads and expenditure on the supply of consumables.

- **Results**
 - The (weak) increase in current costs observed in amalgamated municipalities might be driven by an increase of financial expenses.
Heterogeneous effects – Investments specific items

- **Specific Items**

 (i) purchases of buildings, technical works and supplies of fixed assets (10% of total investments)

 (ii) projects (corresponding to approximately 80%)

 (iii) studies, research, experimental work and specific costs (8% of total investments)

 (iv) Fixed investment titles (business holdings)

- **Results**

 - purchases of buildings and technical works yield **significant and negative effects**
Output - GDP based on luminosity

Why?
- Verify whether the reduction of expenditure after the amalgamation process led to a decrease in local economic conditions

How?
- Nighttime light activity to proxy GDP per capita at the municipal level

Results
- Statistically significant decrease in local GDP.
- Evidence that the reduction in investment has been achieved by significantly deteriorating local economic conditions
Conclusions

We investigated the **municipal amalgamation in Greece** to identify the **impact of the amalgamation** process on current costs and investments.

We extensive examined this reform for the first time relying on a unique dataset on and we used remote sensing and satellite imagery of local night-time lights to proxy economic activity at municipal level.

We found significant effects on current costs only when we control for region-by-year fixed effects as well as vertical transfers and negative and robust effect of amalgamation on investment from 11 to 20%.

Future steps: Whether the **political alignment of local governments with the central government** has an effect of municipal revenues and expenditures.
Thank you
Questions?

© European Union 2022

Unless otherwise noted the reuse of this presentation is authorised under the CC BY 4.0 license. For any use or reproduction of elements that are not owned by the EU, permission may need to be sought directly from the respective right holders.