Voting in Shareholder Meetings

Laurent Bouton (Georgetown University)
Aniol Llorente-Saguer (Queen Mary, London)
Antonin Macé (Paris School of Economics)
Dimitrios Xefteris (University of Cyprus)

CRETE, Tinos
July 2022
Introduction

- **Shareholder meetings**: key feature of corporate governance
 - shareholders hold managers accountable through votes on various issues
 - voting outcomes affect the firm’s value
Introduction

- **Shareholder meetings**: key feature of corporate governance
 - shareholders hold managers accountable through votes on various issues
 - voting outcomes affect the firm’s value
- **We study voting at shareholder meetings**
Introduction

- **Shareholder meetings**: key feature of corporate governance
 - shareholders hold managers accountable through votes on various issues
 - voting outcomes affect the firm’s value

- We study voting at shareholder meetings

- What are the main features of voting at those meetings?
Introduction

- **Shareholder meetings**: key feature of corporate governance
 - shareholders hold managers accountable through votes on various issues
 - voting outcomes affect the firm’s value
- **We study voting at shareholder meetings**
- **What are the main features of voting at those meetings?**
 - shareholders typically hold different numbers of shares
 - shareholders have common objectives (i.e. they care to maximize the firm’s value)
 - shareholders are imperfectly and asymmetrically informed
 - issues emerge exogenously or endogenously (i.e. management’s proposals)
Introduction

- **Shareholder meetings**: key feature of corporate governance
 - shareholders hold managers accountable through votes on various issues
 - voting outcomes affect the firm’s value
- We study voting at shareholder meetings
- What are the main features of voting at those meetings?
 - shareholders typically hold different numbers of shares
 - shareholders have common objectives (i.e. they care to maximize the firm’s value)
 - shareholders are imperfectly and asymmetrically informed
 - issues emerge exogenously or endogenously (i.e. management’s proposals)
- Intergovernmental entities with a well-defined purpose like ECB, NATO, IMF, etc.
- **Our main objective**: Identify the features of the voting mechanism that matter most for efficiency of outcomes in this setting.
The voting mechanism affects outcomes through:

- **voting efficiency**: does it help shareholders aggregate the available information efficiently?
Introduction

The voting mechanism affects outcomes through:

- **voting efficiency**: does it help shareholders aggregate the available information efficiently?
- **selection**: does it provide incentives to the management to propose good reforms and to veto bad ones?
The voting mechanism affects outcomes through:

- **voting efficiency**: does it help shareholders aggregate the available information efficiently?
- **selection**: does it provide incentives to the management to propose good reforms and to veto bad ones?

When the proposal is exogenous we care only about voting efficiency.
Introduction

- The voting mechanism affects outcomes through:
 - **voting efficiency:** does it help shareholders aggregate the available information efficiently?
 - **selection:** does it provide incentives to the management to propose good reforms and to veto bad ones?

- **When the proposal is exogenous we care only about voting efficiency**
- **When the proposal is endogenous we care about both.**
According to the literature, **voting efficiency** is affected by the mechanism through:

- **allocation of voting rights**: should number of votes depend on the number of shares? what if shareholdings and information precision are not (or, even, negatively) correlated? (Nitzan and Paroush 1982; Azrieli 2018)

- **quota requirement for reform approval**: simple or super majority? (Austen-Smith and Banks 1996; Maug and Rydqvist 2009)

- **flexibility in abstention**: should shareholders be allowed to abstain? if so, should they be allowed to abstain on any fraction of their votes? (Feddersen and Pesendorfer 1996; Bar-Isaac and Shapiro 2020)
Introduction

- According to the literature, **voting efficiency** is affected by the mechanism through:
 - **allocation of voting rights**: should number of votes depend on the number of shares? what if shareholdings and information precision are not (or, even, negatively) correlated? (Nitzan and Paroush 1982; Azrieli 2018)
 - **quota requirement for reform approval**: simple or super majority? (Austen-Smith and Banks 1996; Maug and Rydqvist 2009)
Introduction

- According to the literature, **voting efficiency** is affected by the mechanism through:

 - **allocation of voting rights**: should number of votes depend on the number of shares? what if shareholdings and information precision are not (or, even, negatively) correlated)? (Nitzan and Paroush 1982; Azrieli 2018)

 - **quota requirement for reform approval**: simple or super majority? (Austen-Smith and Banks 1996; Maug and Rydqvist 2009)

 - **flexibility in abstention**: should shareholders be allowed to abstain? if so, should they be allowed to abstain on any fraction of their votes? (Feddersen and Pesendorfer 1996; Bar-Isaac and Shapiro 2020)
We prove that with maximum flexibility in abstention:

1) the other two features of the voting system become irrelevant, and
2) the mechanism achieves full-information equivalence.
We prove that with maximum flexibility in abstention:

1) the other two features of the voting system become irrelevant, and
2) the mechanism achieves full-information equivalence.

Optimal intervention does not depend on the exact parametrization (e.g. correlation between shareholdings and information quality); ex-post equilibrium; uncertainty/ambiguity regarding the quality of information that other voters hold; no trade; misaligned shareholders)
The Model

- Firm with a set \(N = \{1, 2, \ldots, n\} \) of shareholders, with \(n > 2 \)
 - shareholder \(i \in N \) holds \(d_i \in \mathbb{N} \) shares, with \(\sum_{i \in N} d_i = m \)
 - share distribution: \(d = (d_1, d_2, \ldots, d_n) \)
 - fraction of shares held by \(i \): \(h_i = \frac{d_i}{m} \)

- Two alternatives: \(K = \{A, B\} \)
 - \(A \) is proposal by management (for now, quality exogenous)
 - \(B \) is status quo

- State-dependent preferences
 - Two states: \(\Omega = \{\alpha, \beta\} \), with even prior
 - Shareholders’ preferences:
 \[
 u_i(A|\alpha) = h_i, \quad u_i(A|\beta) = -h_i, \\
 u_i(B|\alpha) = u_i(B|\beta) = 0.
 \]
The Model

- Each shareholder \(i \) receives a signal \(s_i \in S = [0, 1] \)
 - distributed according to \(F_i(\cdot | \omega) \), admits density \(f_i(\cdot | \omega) \)
 - conditional on the state, signals drawn independently

- The type of player \(i \) is \(t_i = \frac{f_i(s_i|\alpha)}{f_i(s_i|\beta)} \in T_i \)

 Assumption 1. \(t_i \) weakly increasing in \(s_i \).
 - shareholders receiving higher signals attach larger probability to \(\alpha \)

 Assumption 2. \(\exists \delta_i \in (0, 1) \) such that \(\frac{f_i(0|\alpha)}{f_i(0|\beta)} = \delta_i \) and \(\frac{f_i(1|\alpha)}{f_i(1|\beta)} = 1/\delta_i \).
 - no shareholder with arbitrarily precise information about the state

- For some results:

 Assumption 3. \(t_i \) is continuous and \(T_i = T \ \forall i \).
 - all types possible for one shareholder are possible for any other

- Allow for arbitrarily large differences in the expected information quality of two shareholders
The Model
Voting Mechanisms

- A voting mechanism V associates a voting rule to d: $V(d) = \{X, w\}$
 - ballot space $X = (X_1, X_2, ..., X_n)$ with $X_i \subseteq \mathbb{R}$
 - threshold $w \in \mathbb{R}$
- Each shareholder $i \in N$ chooses $x_i \in X_i$
- The outcome is

$$G^w(x) = \begin{cases}
A & \text{if } \sum_{i \in N} x_i > w \\
AB & \text{if } \sum_{i \in N} x_i = w \\
B & \text{if } \sum_{i \in N} x_i < w.
\end{cases}$$

where AB denotes the fair lottery between A and B.
The Model
Voting Mechanisms

We consider a broad class of voting mechanisms:

Definition
A voting mechanism V associates to any share distribution d a voting rule $V(d) = \{X, w\}$, where $X = (X_1, X_2, \ldots, X_n)$ with $X_i \subseteq \mathbb{R}$ and $w \in \mathbb{R}$, and is such that each shareholder $i \in N$ chooses $x_i \in X_i$ and the outcome is [a]

$$G^w(x) = \begin{cases}
A & \text{if } \sum_{i \in N} x_i > w \\
AB & \text{if } \sum_{i \in N} x_i = w \\
B & \text{if } \sum_{i \in N} x_i < w.
\end{cases}$$

where AB denotes the fair lottery between A and B.

[a]All results can be easily extended to a more general formulation of the voting rule $V(d) = \{X, w_A, w_B\}$ with $w_A \leq w_B$, where the outcome is A if $\sum_{i \in N} x_i > w_A$, B if $\sum_{i \in N} x_i < w_B$, and AB if $\sum_{i \in N} x_i \in [w_A, w_B]$.
The Model

Voting Mechanisms

- **1P1V** mechanism, \(V^{1P1V} \)
 \[
 V^{1P1V}(d) = \{ \times_{i \in N}\{-1, 1\}, 0 \}
 \]

- **1P1V-D** mechanism, \(V^{1P1V} \)
 \[
 V^{1P1V}(d) = \{ \times_{i \in N}\{-1, 1\}, 0 \}
 \]

- **1S1V** mechanism, \(V^{1S1V} \)
 \[
 V^{1S1V}(d) = \{ \times_{i \in N}\{-d_i, -d_i + 1, -d_i + 2, \ldots, d_i\}, 0 \}
 \]

Two extreme variants of **1S1V**

- **1S1V-R** mechanism, \(V^{1S1V-R} \)
 \[
 V^{1S1V-R}(d) = \{ \times_{i \in N}\{-d_i, d_i\}, 0 \}
 \]

- **1S1V-D** mechanism, \(V^{1S1V-D} \)
 \[
 V^{1S1V-D}(d) = \{ \times_{i \in N}\{-d_i, d_i\}, 0 \}
 \]

A voting rule \(\{X, w\} \) is a continuous voting mechanism if there exists \((\psi_i)_{i \in N} \in \times_{i \in N} \text{int}(X_i) \), such that \(\sum_{i \in N} \psi_i = w \).
The Model

- For each mechanism:
 - strategy is $\sigma_i : T \rightarrow \Delta(X_i)$
 - $\hat{\sigma}_i(x)$ denotes a potential realization of the random variable $\sigma_i(x)$
- We focus on Bayesian Nash Equilibria (BNE)
Welfare Benchmarks

- Two benchmarks for different purpose:
 - Efficiency
 - Comparison of mechanisms

- Based on decision of common-value shareholders with different information
Welfare Benchmarks

- Efficiency

- If common-value shareholders know the signal profile

Definition

Efficient outcome E: A if $Pr(\alpha|s) > \frac{1}{2}$, B if $Pr(\beta|s) > \frac{1}{2}$, AB otherwise.

- Natural implementation notion:

Definition

V is efficient if it implements the efficient outcome in a BNE.
Welfare Benchmarks

- **Comparison of mechanisms**
- If common-value shareholders know the state

Definition
Correct outcome is A in state α, B in state β.

- Focus on ex-ante probability of implementing the correct outcome

Definition
Voting mechanism V dominates voting mechanism V' given a share distribution d if (i) for every BNE of $V'(d)$, there is a BNE of $V(d)$ such that the ex-ante probability of implementing the correct outcome is higher under V than V'; and (ii) for every BNE of $V(d)$, there is a BNE of $V'(d)$ such that the ex-ante probability of implementing the correct outcome is lower under V' than V. If, moreover, either (i) or (ii) (or both) hold strictly, we say that V strictly dominates V'.
Comparing Mechanisms

Lemma

\[\Pr(\alpha|s) > \frac{1}{2} \Leftrightarrow \sum_{i \in N} \ln(t_i) > 0. \]
(Nitzan and Paroush, 1982)

Proof.

First, note that

\[
\Pr(\alpha|s) = \frac{\prod_{i \in N} f_i(s_i|\alpha) \Pr(\alpha)}{\prod_{i \in N} f_i(s_i|\alpha) \Pr(\alpha) + \prod_{i \in N} f_i(s_i|\beta) \Pr(\beta)}
\]

Thus, \(\Pr(\alpha|s) > 1/2 \) requires

\[
\prod_{i \in N} f_i(s_i|\alpha) > \prod_{i \in N} f_i(s_i|\beta), \quad \text{or}
\]

\[
\sum_{i \in N} \ln\left(\frac{f_i(s_i|\alpha)}{f_i(s_i|\beta)}\right) > 0.
\]
Comparing Mechanisms

Consider a group of voters with the type space \(T = \{ \frac{1}{e^{10}}, \frac{1}{e}, e, e^{10} \}. \)

- \(V = \{ \times_{i \in N} \{-10, -1, 1, 10\}, 0 \} \) allows them to secure the efficient outcome if they each cast \(\ln(t_i) \) votes in favor of \(A. \)

- Such a mechanism also makes the “inefficient” outcome (i.e., \(A \) when \(\Pr(\alpha|s) < \frac{1}{2} \) and \(B \) when \(\Pr(\alpha|s) > \frac{1}{2} \)) attainable, since a voter of type \(t_i \) could cast \(-\ln(t_i) \) votes in favor of \(A. \)

- Under \(V' = \{ \times_{i \in N} \{-10, 10\}, 0 \} \) neither the efficient or the inefficient outcome is attainable.
Comparing Mechanisms

Definition

Consider two voting mechanisms, \(V \) and \(V' \), with associated rules
\(V(d) = \{X, w\} \) and \(V'(d) = \{X', w\} \). If \(X'_i \subseteq X_i \) for every shareholder \(i \) and every share distribution \(d \), then \(V \) is said to have a richer ballot space than \(V' \).

We are now ready to state our first main result.

Proposition

If a finite mechanism \(V \) has a richer ballot space than mechanism \(V' \), and \(d \) is such that there is no decisive shareholder, then \(V \) dominates \(V' \).

- **Sketch of the proof:**
 - (Best) McLennan (1998), and any outcome under \(V' \) can be reproduced under \(V \) by simply replicating the strategy
 - (Worst) Any BNE is equivalent in terms of welfare to a profile of monotone strategies (reordering method). A profile of monotone strategies is at least as good as a constant equilibrium.
Comparing Mechanisms

Corollary

1S1V weakly dominates both 1S1V-R and 1P1V. For some values of the parameters, the dominance is strict.

Strict dominance? numerical example
Comparing Mechanisms

Binary example

- Firm with six shareholders
 - shareholders 1 to 3 hold $k \in \{1, 2, 3\}$ shares each
 - shareholders 4 to 6 hold $4 - k$ shares each

- Binary signals, $s_i \in \{a, b\}$
 - $p(a|\alpha) = p(b|\beta) = .55$ for shareholders 1 – 3
 - $p(a|\alpha) = p(b|\beta) = p_H \in [.55, 1)$ for shareholders 4 – 6
Comparing Mechanisms

Binary example

<table>
<thead>
<tr>
<th>k = 1 (Pos. Corr.)</th>
<th>k = 2 (No Corr.)</th>
<th>k = 3 (Neg. Corr.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MV</td>
<td>NA</td>
<td>PA</td>
</tr>
</tbody>
</table>

Probability Correct Decision

Probability of Correct Signal - High Types
Efficient Mechanism

- To be efficient, the voting mechanism must have a ballot space at least as rich as signal space.
- We can achieve a full characterization of:
 - voting mechanisms that lead to efficiency in equilibrium,
 - complete set of efficient equilibria corresponding to each such mechanism.
Continuous Voting

Proposition

$V^{1S1V-D}(d)$, admits a unique (up to admissible multiplicative and additive constants) efficient BNE, σ^{1S1V-D}, and it is such that

$$\sigma_i^{1S1V-D}(t_i) = c \ln t_i + \kappa_i$$

with $\sum_{i \in N} \kappa_i = 0$ and $c \in (0, \min\{\frac{-d_i - \kappa_i}{\ln \delta}, \frac{-d_i + \kappa_i}{\ln \delta}\}]$ for every $i \in N$.

Sketch of the proof:

- observation: $\Pr (\alpha|s) > \frac{1}{2} \iff \sum_{i \in N} \log (t_i) > 0$
- equilibrium strategy means A wins iff $\sum_{i \in N} c \log (t_i) > 0 \rightarrow$ efficient
- σ maximizing ex ante welfare is equilibrium
- uniqueness? every $\sigma \in \Sigma^*_{V^{1S1V-D}}$ must be such that
 - $\text{sgn} (\sum_{i \in N} \hat{\sigma}(t_i)) = \text{sgn} (\sum_{i \in N} \ln (t_i))$
 - only strategies above satisfy that condition
Continuous Voting

Proposition

$V^{1S1V-D}(d)$, admits a unique (up to admissible multiplicative and additive constants) efficient BNE, σ^{1S1V-D}, and it is such that $\sigma^{1S1V-D}_i(t_i) = c \ln t_i + \kappa_i$ with $\sum_{i \in N} \kappa_i = 0$ and $c \in (0, \min\{\frac{-d_i - \kappa_i}{\ln \delta}, \frac{-d_i + \kappa_i}{\ln \delta}\}]$ for every $i \in N$.

- Two features of $1S1V-D$ contrast with the previous rules
 1. σ^{1S1V-D} independent of the information technology of others
 2. $1S1V-D$ remains efficient when uncertainty/ambiguity about info. technology
 3. Efficient equilibrium for any majority requirement
 4. Efficiency does not depend on the allocation of votes

Proposition

A mechanism is efficient iff it is a continuous voting mechanism.
Robustness

- We explore the robustness of the
 - efficiency of continuous mechanisms
 - dominance of mechanisms with richer ballot spaces

- We focus on the following
 1. Partisan shareholders**
 2. Endogenous information*
Robustness

Partisans

- Disagreement among shareholders not only information asymmetries, also differences in preferences (Bolton et al., 2020)
 - differences in portfolio allocation (Cohen and Schmidt 2009), business ties (Davis and Kim 2007, and Cvijnovic et al. 2016), reputational concerns (Chevalier and Ellison 2009), and political and social goals (Woidtke 2002)
Robustness
Partisans

- Disagreement among shareholders not only information asymmetries, also differences in preferences (Bolton et al., 2020)
 - differences in portfolio allocation (Cohen and Schmidt 2009), business ties (Davis and Kim 2007, and Cvijnovic et al. 2016), reputational concerns (Chevalier and Ellison 2009), and political and social goals (Woidtke 2002)

- Model with two additional types of shareholders: A and B

\[
\forall D \in \{A, B\}, \forall \omega \in \{\alpha, \beta\}, \quad \begin{cases}
u_i^A(d, \omega) = h_i \times 1_{\{D=A\}} \\ \nu_i^B(d, \omega) = h_i \times 1_{\{D=B\}} \end{cases}
\]

- Fraction of shares held by partisans: h_A and h_B
Robustness

Partisans

- Two cases:
 - h_A and h_B are common knowledge
 - h_A and h_B are **not** common knowledge*

- The mechanisms distribute power “similarly”.
Robustness

Partisans

Proposition

Consider that h_A and h_B are common knowledge. Then: (i) if a finite mechanism V has a richer ballot space than mechanism V' –but the two mechanisms distribute power similarly– and d is such that there is no decisive voter, then V dominates V'; and (ii) if d is such that $h_C > |h_A - h_B|$, then V^{1S1V-D}, admits an efficient BNE.
Robustness

Partisans

Proposition

Consider that h_A and h_B are common knowledge. Then: (i) if a finite mechanism V has a richer ballot space than mechanism V' – but the two mechanisms distribute power similarly – and d is such that there is no decisive voter, then V dominates V'; and (ii) if d is such that $h_C > |h_A - h_B|$, then V^{1S1V-D}, admits an efficient BNE.

- Intuition:
Robustness
Partisans

Proposition

Consider that \(h_A \) and \(h_B \) are common knowledge. Then: (i) if a finite mechanism \(V \) has a richer ballot space than mechanism \(V' \) —but the two mechanisms distribute power similarly— and \(d \) is such that there is no decisive voter, then \(V \) dominates \(V' \); and (ii) if \(d \) is such that \(h_C > |h_A - h_B| \), then \(V^{1S1V-D} \), admits an efficient BNE.

- Intuition:
 - partisans have one undominated strategy: vote \(+d_i\) or \(-d_i\)
 - say \(h_A > h_B \) → as if mechanism biased against \(B \)
 - other shareholders compensate for bias
Robustness

Partisans

Proposition

Consider that \(h_A \) and \(h_B \) are common knowledge. Then: (i) if a finite mechanism \(V \) has a richer ballot space than mechanism \(V' \) — but the two mechanisms distribute power similarly — and \(d \) is such that there is no decisive voter, then \(V \) dominates \(V' \); and (ii) if \(d \) is such that \(h_C > \left| h_A - h_B \right| \), then \(V^{1S1V-D} \), admits an efficient BNE.

● Intuition:
 ● partisans have one undominated strategy: vote \(+d_i \) or \(-d_i \)
 ● say \(h_A > h_B \) → as if mechanism biased against \(B \)
 ● other shareholders compensate for bias
 ● two modifications to efficient strategy:
 ★ rescale strategy by factor \(1 - \frac{h_A-h_B}{h_C} \) to leave room for compensation
 ★ include \(d_i \times \frac{h_A-h_B}{h_C} \) points in favor of \(B \) on her ballot
Partisans

Presence of known number of partisans can reinforce dominance of 1S1V over 1S1V-R
Robustness
Partisans

- Presence of known number of partisans can reinforce dominance of 1S1V over 1S1V-R

Why?

- presence of partisans makes information aggregation under 1S1V-R less efficient
Robustness

Partisans

- Presence of known number of partisans can reinforce dominance of 1S1V over 1S1V-R

Why?

- presence of partisans makes information aggregation under 1S1V-R less efficient
- problem: shareholders cannot at the same time reveal their information and compensate for the bias
Robustness

Partisans

- Presence of known number of partisans can reinforce dominance of 1S1V over 1S1V-R

- Why?
 - presence of partisans makes information aggregation under 1S1V-R less efficient
 - problem: shareholders cannot at the same time reveal their information and compensate for the bias
 - evident when one allows for asymmetric strategies
 - under 1S1V-R, some shareholders specialize in compensating for the bias and others in sharing information (i.e., they vote sincerely)
 - information of shareholders who compensate for the bias is lost
Robustness

Partisans

- Presence of known number of partisans may reinforce dominance of $1S1V$ over $1S1V-R$
Robustness

Partisans

- Presence of known number of partisans may reinforce dominance of $1S1V$ over $1S1V-R$
- Example with 7 voters, $\Pr(s_{\alpha}|\alpha) = \Pr(s_{\beta}|\beta) = 0.55$ (w/o partisans no difference)
Conclusion

- We study information aggregation in shareholder meetings
 - Unknown correlation between shareholdings and information quality
- We compare the performance of different mechanisms
 - Special focus on abstention flexibility
- Exogenous proposal
 - Abstention flexibility more important than allocation of voting weights/proper setting of quota requirements
 - Robust in several directions
- Endogenous proposal
 - Trade-off between selection and voting efficiency underlying the comparison of $1P1V-D$ and $1P1V$

Thank you!