
School of Information Sciences and Technology

Department of Informatics

Athens, Greece

Master Thesis
in

Computer Science

Exploring evaluation methods for automatically
generated summaries

Stratos Xenouleas

Supervisors: Prodromos Malakasiotis

Marianna Apidianaki

Ion Androutsopoulos

November 2020



Abstract

In this thesis, we experiment with automatic quality and content evaluation measures

for summaries produced from articles of di�erent domains that have been automatically

summarized. The ultimate goal is to propose an evaluation measure that can be used by

users who want to assess how good a system summary is in terms of quality and content

preservation, compared to the original document(s), without the need for human-written

references. First, we consider the existing and commonly used metrics for summary

evaluation and the limitations they have. Generally, we investigate the evaluation task

for summaries generated by di�erent types of models. We develop measures that we

evaluate on biomedical and news summaries, we compare them with other state-of-the-art

measures and explore their correlations alongside the absolute error with respect to human

judgments of summary quality.
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Περίληψη

Στην παρούσα διπλωµατιϰή εργασία διερευνούµε αυτόµατα µέτρα αξιολόγησης της ποιό-

τητας ϰαι του περιεχοµένου περιλήψεων άρϑων από διαφορετιϰές ϑεµατιϰές περιοχές,

οι οποίες έχουν παραχϑεί αυτόµατα. Ο στόχος αυτής της µελέτης είναι να προτείνουµε

ένα µέτρο αξιολόγησης το οποίο ϑα µπορεί να χρησιµοποιηϑεί από ϰάϑε χρήστη που

επιϑυµεί να αξιολόγηση την ποιότητα µίας αυτόµατης περίληψης, όσον αφορά τόσο στη

διατήρηση του περιεχοµένου του πρωτότυπου ϰειµένου, όσο τα ποιτιϰά ϰαι γλωσσιϰά

της χαραϰτηριστιϰά. Επιπρόσϑετα, στόχος µας είναι το προτεινόµενο µέτο αξιολόγησης

να µπορεί να δώσει ιϰανοποιητιϰά αποτελέσµατα χωρίς την ανάγϰη πρόσβασης σε πε-

ριλήψεις που έχουν γραφτεί από ανϑρώπους. Αρχιϰά, αναλύουµε τα υπάρχοντα ϰαι

ευρέως χρησιµοποιούµενα µέτρα αξιολόγησης ϰαι αναλύουµε τις αδυναµίες που µπορεί

να παρουσιάζουν. Εξετάζουµε τη διαδιϰασία αξιολόγησης περιλήψεων σε περιλήψεις

που προέρχονται από µοντέλα διαφόρων ειδών. Αναπτύσσουµε µέτρα αξιολόγησης τα

οποία εξετάζουµε σε βιοϊατριϰά δεδοµένα ϰαι δεδοµένα ειδήσεων, συγϰρίνοντάς τα µε

άλλα ϰορυφαία (state-of-the-art) µέτρα υπολογίζοντας πόσο απέχουν οι εϰτιµήσεις τους

τους από τις ανϑρώπινες αξιολογήσεις ϰαι πόσο ϰαλά µπορούν να συσχετιστούν µε

αυτές.
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1Introduction

Summarization is the task of identifying and combining the most important information

from one or several documents to produce a summary. Over the past few years, neural

summarizers (Rush et al., 2015; See et al., 2017) have signi�cantly advanced the state-of-

the-art. However, the evaluation procedure is tedious, since it requires great human e�ort

by skilled annotators who assess the quality of the system generated summaries. More

importantly, during the development of summarization models, researchers need a fast,

accurate estimation of the performance of their models and relying on human experts is

impractical. Hence, the need of �nding an automatic measure is considered imperative.

The most commonly used automatic evaluation measures for summarization are rouge

(Lin and Hovy, 2003; Lin, 2004) and bleu (Papineni et al., 2002) which count overlapping

n-grams between a system generated summary and a human-written summary, called

reference. Human references are not easy to produce. Focusing on surface similarities, these

metrics do not provide good assessments of summary quality. Hence, their estimations

are often inaccurate and the metrics do not always correlate well with human judgments

(Stent et al., 2005; Callison-Burch et al., 2006). Actually, even when rouge correlates

well with human quality scores, this does not always re�ect the actual quality of the

summaries. Intuitively, the higher correlation indicates that the automatic measure ranks

the summaries similarly to human judges compared to other summaries, which is useful in

competitions since we can distinguish the summarizers producing better or worse quality

summaries. However, many versions of rouge, especially those based on overlaps of

higher order n-grams, tend to produce low scores with small di�erences in the ratings

and despite the fact that they may correlate well with the manual scores, the di�erences

between systems, as re�ected in the mean absolute error (mae), are very small. In such

cases, and in order to better estimate the quality of a summary, mae is a better evaluation

measure.

1.1 Contribution of the thesis

We conduct an extensive analysis of the existing evaluation measures considering two

dimensions: (i) the quality of the system generated summaries, hereafter described as

quality estimation; and (ii) the extent to which the generated summaries contain the

most important information expressed in the source document(s), hereafter described
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as content estimation. In both cases, our goal is to propose an evaluation measure that

does not require human reference summaries and correlates well with human judgments

of summary quality. In our experiments, we thus measure the correlation alongside the

Mean Absolute Error (mae) which shows how close the metric’s predictions are to the

human quality scores. We use the mae at the summary level and measure the correlation

of our proposed metric with human judgments across documents, hereafter described

as document level evaluation. This shows how well our proposed metric can rank the

summaries that have been automatically produced for a speci�c source document.

1.2 Outline of the thesis

The rest of the thesis is organized as follows:

• Chapter 2 discusses related work and background information.

• Chapter 3 describes the datasets used in this thesis.

• Chapter 4 presents our quality estimation alongside the experiments and the results.

• Chapter 5 presents our content estimation alongside the experiments and the results.

• Chapter 6 concludes and proposes ideas for future work.

1.2 Outline of the thesis 2



2Background

2.1 Summarization approaches

Extractive vs. Abstractive summarization: There are two main automatic summa-

rization strategies: (i) extractive summarization (Dorr et al., 2003; Nallapati et al., 2017),

where salient sequences (e.g., sentences, n-grams) of the source document(s) are selected

and copied directly to the summary; and (ii) abstractive summarization (Nye and Nenkova,

2015; See et al., 2017) where the summarizer has to understand the source document(s)

and generate the summary from scratch. A hybrid strategy (Hsu et al., 2018) has also been

proposed which combines the extractive and abstractive approaches where the salient

sequences of the source document(s) should be identi�ed and paraphrased in order to be

included in the summary. Both approaches need to identify the most important passages

in the source document(s). In the case of abstractive summarization, however, these need

also to be understood in order to be rephrased and used in the summary. In an extractive

summarization approach, the salient text sequences can simply by concatenated to form

the summary. Hence the abstractive strategy is considered more di�cult.

Single-document vs. multi-document summarization: Another axis of di�erentia-

tion for summarization approaches is the number of source document(s) from which the

summary is constructed. A coarse distinction that can be established is between single-

document summarization (Litvak and Last, 2008; See et al., 2017) and multi-document

summarization (Erkan and Radev, 2004; Radev et al., 2004). Single-document summa-

rization aims at �nding the key points of a single source document, and generating a

summary according to the strategy followed by the summarizer (extractive or abstractive).

In multi-document summarization, however, the model needs to extract the most informa-

tive points from every source document and identify the ones that should be included and

synthesized in the generated summary so as to produce a readable output. A challenge

faced by models in both cases, is the redundancy of information in the generated summary.

This is less of a problem in single-doc summarization, since ideas might be expressed only

once in the source text; but in multi-doc summarization, the same ideas might be expressed

several times and with slight variations, in more than one documents. Therefore, in multi-

document summarization, the salient sequences should be located in the source documents

and appropriately �ltered in order to avoid redundant information in the summary. This

constitutes an additional di�culty in case of multi-document summarization, compared to

single-document.

3



2.2 Summary evaluation approaches

Content-based vs. Quality-based evaluation: Automatically produced summaries

can be evaluated extrinsically, as to whether they can serve in speci�c downstream tasks

(for example, question answering), or intrinsically (Steinberger and Jezek, 2012). Extrinsic
measures assess whether the automatically produced summaries can help in a given task;

in the case of question answering, they estimate how useful the summary can be for

answering speci�c questions. On the other hand, intrinsic methods focus on the quality

and content of the automatically generated summary. This is the kind of evaluation we

address in this work.

The intrinsic evaluation measures can be further distinguished into quality based and

content based. Quality evaluation measures analyze the quality characteristics of the

system generated summary without need to access other documents. We use the term

“quality characteristics” to refer to the properties that we want, ideally, the summary to

have, such as readability, �uency, non-redundancy, etc. All of the above mentioned criteria

can be examined by only accessing the system-generated summary. On the contrary, the

content-based evaluation measures, in most cases, involve a comparison of the summary

to another document(s), which serves to assess whether the summary captures the key

points of content. The document(s) used for the comparison can be either the source

document(s), or some human-written summaries (called references) which include the

important information from the source document(s).

Reference-based vs. reference-free measures: This distinction applies to content-

based evaluation metrics, which involve a comparison of the summary to other documents.

We describe as “reference free” the metrics that do not use any human-crafted summary

(reference), and only rely on the source documents(s). We describe as “reference-based”

the metrics that use human-written references for comparison. These reference texts are

generally produced by human annotators who are asked to read the original document(s)

and produce shorter texts carrying the same information.

Supervised-based vs. Non-supervised measures: Human evaluation of automatic

summarization output is an expensive procedure, there, however, exist supervised mea-

sures that leverage available human annotations. These try to evaluate system-generated

summaries in a way similar to that used by human annotators to evaluate their quality.

Supervised metrics are trained on “gold” ground truth assessment scores, contrary to

unsupervised metric. These measures can also be distinguished into quality-based and

content-based, depending on whether they evaluate the linguistic qualities of a summary

(e.g., grammaticality) or its content (i.e. whether the summary contains the important

information from the original document or a reference summary). Also, the content-based

ones, can be either reference-free or reference-based, as described above.

2.2 Summary evaluation approaches 4



2.3 Assessing the quality of summarization
evaluation metrics

Evaluation measures can also be compared and evaluated, in respect to how well they

approximate human quality assessments. A straightforward way to do so is to compare

the estimations produced by an automatic metric for a summary to the assigned manual

scores. The comparison can involve measuring the correlation (e.g., Spearman ρ, Kendall

τ , Pearson r) of the two scores, or calculating the mean absolute error (mae) between

them.

Measuring correlation and error: The most common way to compare the predictions

made by an automatic metric with the human judgments is to assess the performance of

automatic measures using correlation measures. The most commonly used correlation

measures are Kendall τ (Puka, 2011), Spearman ρ (Sedgwick, 2014) and Pearson r (Kirch,

2008). Kendall’s correlation is a non-parametric statistic dependence test based on τ -

coe�cient and takes values in the interval [-1, 1]. Intuitively, the higher values indicate a

stronger association of the automatic and the manual ranking compared to lower values.

A zero correlation indicates the dissimilarity of the two rankings. Let n be the number of

summaries for which a human score h1, ...hn and an automatically assigned score a1, ...an

are available. The pair (hi, ai) corresponds to the human and the automatic scores assigned

to a summary i. In the case of system-level evaluation, an observation corresponds to a

system (rather than a summary). A pair of observations (hi, ai) and (hj , aj), where i < j,

is said to be concordant if hi < hj and ai < aj or hi > hj and ai > aj ; otherwise the pair

is said to be discordant. When hi = hj and ai = aj , the pair is neither concordant nor

discordant. Also, let Ccon and Cdis be the number of concordant and discordant pairs of

observations respectively. When all the human scores are equal to the manual ones, the

correlation cannot be calculated. In all the other cases, the Kendall’s τ correlation can be

calculated as:

τ = Ccor − Cdis(n
2
) = Ccor − Cdis

n(n−1)
2

= 2(Ccor − Cdis)
n(n− 1) (2.1)

Spearman’s ρ coe�cient is similar to Kendall’s τ . It is a also non-parametric measure

of rank correlation and takes values in the interval [-1, 1]. Speci�cally, it assesses the

monotonic relationships of two distributions. It is equal to Pearson’s correlation, which is

described below, between the rank values of those two distributions. LetRh = Rhi
, ..., Rhn

and Ra = Rai , ..., Ran be the rank values of the distributions h and a respectively. The

observation (Rhi
, Rai) corresponds to the rank of hi in the human scores distribution

and the rank of ai in the corresponding automatic scores distribution described above

2.3 Assessing the quality of summarization evaluation metrics 5



(e.g., (1, 5)). Let n be the number of summaries; 1 denotes the �rst position in the ranking

(not the lowest value) in the corresponding distribution and n the highest (position in the

ranking). The Spearman’s ρ correlation can be calculated as:

ρ = Cov(Rh, Ra)
σRh

σRa

(2.2)

Cov(Rh, Ra) are the covariances and σRh
, σRa the standard deviations of Rh and Ra

distributions respectively. Similarly to Kendall’s correlation, Spearman’s correlation takes

higher values when there is a strong association between the automatic and the manual

ranking and lower otherwise. While Spearman’s correlation assesses monotonic relation-

ships of the compared distribution, the last correlation measure, Pearson r, assesses the

linear relationships of the compared distributions and can be calculated as:

r =
∑n

i=1(hi − h̄)(ai − ā))√∑n
i=1(hi − h̄)2

√∑n
i=1(ai − ā)2

(2.3)

where h̄ and ā are the arithmetic means of the human and automatic score distributions,

respectively.

Finally, two distributions can also be compared by the absolute error which shows how

far are, on average, the estimations produced by an automatic measure from the human

scores. We used in our experiments the mean absolute error (mae) which is calculated as

follows:

mae =
∑n

i=1 |hi − ai|
n

(2.4)

Also, in our results we present an average of the above measures across multiple evaluations

alongside the standard error of the mean (sem) which shows how far a sample mean is

likely to be from the actual mean of the whole distribution. sem can be calculated as:

sem = σ√
c

(2.5)

Where σ is the standard error of the sample and c the number of the random samples. The

adequacy of a speci�c metric for an evaluation, depends on the evaluation level on which

it will be applied.

2.3 Assessing the quality of summarization evaluation metrics 6



Figure 2.1.: An example showing the three evaluation levels.

Evaluation at di�erent levels: An automatic metric can be evaluated at the summary,

document or the system level. The simplest way to compare an automatic to a human-

measure is the “summary” level. At this level, the summaries predictions of the automatic

metric are directly compared to the quality scores assigned by the human judges. In

spite of its simplicity, this comparison might not always lead to safe conclusions. The

reason is that in the summary-level evaluation, automatic predictions and human scores of

summaries from di�erent source documents are mixed. Some documents might be easier

to summarize than others; as a consequence, their summaries are generally ranked higher

by the human judges and the automatic metrics. This might lead to inaccurate conclusions

with a correlation metric that accounts for the exact order of the compared distributions.

On the other side, Mean Absolute Error (mae) can provide an indication of the distance

between automatic and human scores. We can see in Figure 2.1 that the correlation

measures at the “summary” level may produce scores equal to 1, indicating that the

automatic measure is very good and managed to rank the summaries with the same order

as the one assigned by the annotators. However, these measures are bad for assessing the

actual quality of the summaries, because if we compare, one by one, the scores assigned by

the judges with the corresponding scores produced by the automatic metric, the absolute

error between each pair is too big. An evaluation at the “document” level, using either

the correlation measures or mae, can serve to remedy the problem of the mixed scores

occurred at the summary level evaluation. In this case, the automatic predictions and the

human scores assigned to the summaries, are separated according to the source document

they summarize. After this separation, we can compare the corresponding distributions

per document, coming up with a correlation and a mae score. In order to extract on

overall score for each measure (correlation-based or mae), for the entire dataset, we can

aggregate by averaging all those scores that correspond to each document, as in Figure 2.1.

An evaluation at the ”system level” is suitable for challenges where the goal is to rank

summarization systems according to their performance. In this case, we aggregate the

human scores assigned to the summaries, and the automatic predictions, according to

the system that produced them. By averaging the human and the measurement’s scores

we can obtain a human score and a measurement’s score per system as in Figure 2.1. At

2.3 Assessing the quality of summarization evaluation metrics 7



the system level, we evaluate the ranking of the systems by the automatic metric and

the human judges. Hence, the correlation based measurements which takes into account

the exact order of the compared distributions, are preferred than the mae at the system

level evaluation. We can see in Figure 2.1 that despite the big mae which indicates that

the estimations are too far from the human scores, the automatic measure managed to

rank the systems in the same order as the judges and achieved correlation equal to 1. This

indicates that, in this speci�c level, the �nal ranking of the systems would be the same

if we reported the automatic or the human ranking. In the experiments of this work, we

report either the mae or the correlations at the document level. We put special focus to

the mae metric because it indicates how better the automatic evaluation measures assess

the quality of the summary than the correlation metrics.

2.4 Limitations of existing summarization
evaluation methods:

The most commonly used evaluation metrics in summarization are rouge (Lin and Hovy,

2003; Lin, 2004) and bleu (Papineni et al., 2002). bleu is widely used in machine translation

(MT) but both measures can be also used to evaluate a system-generated summary. Despite

their popularity, many works (Stent et al., 2005; Callison-Burch et al., 2006) have shown

that bleu and similar measures based on n-gram overlap do not correlate well with human

judgements. rouge and bleu rely on n-gram overlaps between the system-generated text

and the human-reference(s). Many rouge and bleu versions are available but it is not

trivial to decide which one is the best to use (Graham, 2015). The bleu metric exists in

three variations. In the �rst one, each n-gram in the reference summary is matched at most

once to an n-gram from the system-generated text. In the second one, each n-gram in the

reference summary can be matched multiple times to the common n-grams dividing the

total matches with the total number of n-grams in the system-generated text. Finally, the

third version includes a brevity penalty to discourage the matches of very short sequences.

However, the most popular variation calculates the bleu scores (of the �rst version) for

multiple values of n (e.g. n = 1, 2, 3, 4) averaging them to produce the �nal score.

The simplest versions of rouge are inspired by bleu. These are rouge -1 which considers

unigrams (i.e., words) and rouge -2, -3, -4 which consider bigrams, trigrams, and 4-grams

respectively. There are also the rouge-l and rouge-w versions which are based on the

longest common subsequence (LCS) and the weighted LCS statistics, respectively. In

addition, the rouge-s4 and rouge-su4 rely on skip-gram based co-occurrence statistics,

with the di�erence that rouge-su4 considers also unigram overlaps. We should note that

the above described rouge versions, can be calculated with respect to the length of the

reference (e.g., rouge-l -recall), or the system summary (e.g., rouge-l -precision) or

the combination of them (e.g., rouge-l -f1). In all the rouge measures, it can be applied

2.4 Limitations of existing summarization evaluation methods: 8



stop-words removal and stemming in order to obtain more matches. rouge and bleu, as

recall-oriented measures, can be used also to assess how well a system summary preserves

the content of the original text by comparing it to the human reference, hence they are

categorized to the content-based measures.

Another n-gram based evaluation metric, which is mostly used in the machine translations

tasks, is meteor. meteor relies on unigram overlap between system-generated text

and the human-produced references while several improvements have been published

such as meteor 1.5 (Denkowski and Lavie, 2014) which weighs content and function

words di�erently by varying the importance assigned to di�erent types of matching (e.g.,

exact matching, stemmed, etc). Afterward, Guo and Hu (2019) proposed meteor 2++

which further incorporates a learned external paraphrase resource. A popular measure in

summarization evaluation is also pyramid (Nenkova and Passonneau, 2004). pyramid relies

on information units expressed in the candidate summary and reference which are called

symmarization content units (SCUs). The more times a SCU is found in the human-written

summaries, the bigger weight it will have. Thus, a pyramid is created, where the most

important SCUs are placed at the top. Therefore, if a system-generated summary contains

more SCUs that are placed at the top of the Pyramid, the higher pyramid score will be

assigned to it. Therefore, all the above measures are reference based. However, there is a

measure called highres (Hardy et al., 2019) which is also content-based as bleu, but relies

on highlighted snippets, which are extracted, by annotators, from the source document

and capture the salient content. The di�erence between bleu and meteor is that bleu is

reference-based and highres is reference-free. Therefore, both measures need an expert

either to annotate the salient sequences on the source document (highres) or to develop

summaries that capture the salient content in order to be used on the evaluation process

(bleu).

Apart from the n-gram based measures, there are embedding based measures such as

meant2.0 (Lo, 2017) and yisi-1 which use word embeddings and shallow semantic parsing

to compute structural and lexical similarities.
1

These embedding-based measures inspired

Zhang et al. (2020) who proposed bert score. bert score relies on the bert language

representation model (Devlin et al., 2019) and computes a similarity score for each token

in the candidate sentence with each token in the reference sentence. For the calculation of

the similarity it uses the contextual embeddings produced by a sentence-bert encoder

(Reimers and Gurevych, 2019) which is a modi�cation of the pretrained bert model and

can capture paraphrases and longer dependencies on the text than the classic n-gram

based measures. Also, Gao et al. (2020) proposed supert which is similar to bert score

with the di�erence that supert calculates the similarity of the candidate summary with

a pseudo-reference constructed by the proposed mechanism concatenating the �rst 10

sentences of each source document. However, these measures use the bert model without

1

In yisi-1 semantic parsing is optional.

2.4 Limitations of existing summarization evaluation methods: 9



any further training, relying on the representations extracted from the frozen bert. bluert,

proposed by Sellam et al. (2020), and Sum-QE proposed by Xenouleas et al. (2019), train a

bert model to learn better representations, capturing more information about the content

of each word, which can help the quality estimations. We should note that these two

methods (bluert and Sum-QE) are trained to score quality aspects of the summaries (e.g.,

grammaticality, �uency, etc.) which indicates that the contextual embeddings can be used

not only for content evaluation but can help at the quality estimation, too. Speci�cally,

the Sum-QE is constituted by a bert encoder, which converts the summary to a dense

vector representation, and a linear regressor (LR) which learn to predict a quality score.

The model was trained using two settings, the single task (ST) and the multi task learning

(MT). On the single task learning, the model uses one bert encoder and a linear regressor

per quality score that tries to learn predict. On the multi task setting, one bert encoder

is used and as many linear regressors as the number of the di�erent quality scores that

tries to learn predict. Hοwever, the performance of these metrics, which require training,

can be compromised when moving to new domains, even within a known language and

task (Chaganty et al., 2018). In our work, we evaluate the metrics on summaries across

di�erent domains in order to have a better knowledge about their performance.

2.4 Limitations of existing summarization evaluation methods: 10



3Datasets

In this chapter we discuss the three datasets used in this thesis. The �rst two datasets, DUC

and NEWSROOM, contain articles and summaries from the news domain while the third

one comes from a challenge on large-scale biomedical semantic indexing and question

answering (QA), called BioASQ.
123

3.1 DUC

We use the datasets from the NIST DUC-05 (Dang, 2006a), DUC-06 (Dang, 2006b) and DUC-

07 (Over et al., 2007) shared tasks. The tasks were similar at each year: given a question

and a number of relevant news-wire articles the contestants were asked to synthesize a

�uent, well-organized summary. Each submitted summary should answer the question

and contain up to 250 words. Every question has been answered by the judges, so there

are available also some human-written summaries which can be used in the evaluation

process in order to be compared with the system-generated summaries. DUC-05 contains

1,600 summaries (50 questions x 32 systems); in DUC-06, 1,750 summaries are included

(50 questions x 35 systems); and DUC-07 has 1,440 summaries (45 questions x 32 systems).

Each submitted summary was evaluated according to the following �ve linguistic quality

aspects and the guidelines were given for each one are:

• Q1 – Grammaticality: The summary should have no datelines, system-internal

formatting, capitalization errors or obviously ungrammatical sentences (e.g., frag-

ments, missing components) that make the text di�cult to read.

• Q2 –Non redundancy: There should be no unnecessary repetition in the summary.

• Q3 – Referential Clarity: It should be easy to identify who or what the pronouns

and noun phrases in the summary are referring to.

• Q4 – Focus: The summary should have a focus; sentences should only contain

information that is related to the rest of the summary.

• Q5 – Structure & Coherence: The summary should be well-structured and well-

organized. It should not be just a heap of related information, but it should constitute

from sentence to sentence a coherent body of information about a topic.

1

See https://duc.nist.gov/data.html
2

See http://lil.nlp.cornell.edu/newsroom/
3

See http://bioasq.org/
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3.2 Newsroom

The NEWSROOM dataset (Grusky et al., 2018) contains approx. 1.3 million news articles,

along with summaries written by the authors of the articles or editors, and was developed

to train summarization systems. The articles cover a wide range of topics (general news,

sports, entertainment, �nancial) and the (human-authored) summaries use many di�erent

summarization styles. Several baseline and state of the art summarizers have been trained

and tested on Newsroom. Baselines include:

• The Lede-3 (Nallapati et al., 2017) which copies the �rst sentence, �rst paragraph, or

�rst n words of the source text.

• The Extractive Oracle Fragments (Grusky et al., 2018) an oracle that examines the

reference (gold, human-authored) summary, and produces a concatenation of the

longest shared token sequences from the article in the order they appear in the

reference summary

• The TextRank (Mihalcea and Tarau, 2004) an unsupervised sentence-ranking ap-

proach which uses the PageRank algorithm (Page et al., 1999), over a graph which

represents the article’s sentences as nodes, collecting the most signi�cant of them in

the order they appear in the article.

State of the art summarizers include:

• The abstractive summarizer of Rush et al. (2015), who use a sequence-to-sequence

model with attention.

• The Pointer networks (See et al., 2017) which combine extractive and abstractive

summarization strategies.

In their work, Grusky et al. (2018) asked human annotators to score in total 420 system

generated summaries. More precisely, 7 of the above mentioned systems (Abstractive,

Fragments, Lede3, Pointer_c, Pointer_n, Pointer_s and Textrank) constructed a summary

for each one of the 60 randomly selected articles from the released test set. Pointer_c,

Pointer_n and Pointer_s are the Pointer networks with the di�erence that the �rst one

is trained on the CNN / Daily mail dataset (Hermann et al., 2015), the second one on the

Newsroom dataset, and the last one on a random subset of Newsroom training data but

with a size equal to the CNN / Daily Mail training set. Each summary has been evaluated

according to four dimensions:

• Coherence: Do phrases and sentences of the summary �t together and make sense

collectively?

• Fluency: Are the individual sentences of the summary well-written and grammati-

cally correct?

3.2 Newsroom 12



• Informativeness: How well does the summary capture the key points of the article?

• Relevance: Are the details provided by the summary consistent with the details in

the article?

Also, Grusky et al. (2018) provide three more scores that can be computed automatically

for each summary given only the source article.

Coverage intuitively measures the percentage of summary words that come from the

original article. Below S and A are the summary and article, respectively, |·| denotes the

length in words, and F (A,S) is the set of the longest shared word sequences between the

summary and the article.

Coverage(A,S) = 1
|S|

∑
f∈F (A,S)

|f | (3.1)

Density rewards summaries consisting of longer fragments of the article.

Density(A,S) = 1
|S|

∑
f∈F (A,S)

|f |2 (3.2)

Compression measures the ratio of the article length to the summary length.

Compression(A,S) = |A|
|S|

(3.3)

3.3 BioASQ

BioASQ (Tsatsaronis et al., 2015) is a challenge on biomedical retrieval question answering

(QA). Given a question, the participants are required to provide an answer in the required

format depending on the question type (e.g., yes/no, factoid, list) alongside a summary

that supports the answer. The summaries are produced by the participating systems using

the provided relevance articles and the marked snippets (e.g., sentences) annotated by the

experts. Also, it should be mentioned that each question of the dataset has been answered

by at least one expert so there is at least one human written summary that can be used for

the evaluation process and can be compared with the system-generated summaries. We

used the data from 6 years of the challenge (2014–2019). We split the data into training,

validation and test sets by taking the years 2014–2017 for training, 2018 for validation and

2019 for testing. The training data were used only when the evaluation measure required

supervision. The evaluation was conducted using the test data, while the validation data

was used for tuning purposes.

3.3 BioASQ 13



For the evaluation process, each summary has been evaluated according to following

dimensions:

• Information Recall: The extent to which the summary contains all the necessary

information.

• Information Precision: The extent to which the summary does not contain irrele-

vant information.

• Repetition: The extent to which the summary does not contain the same information

more than once.

• Readability: The extent to which the summary is readable.

These dimensions and further guidelines were given by the BioASQ organizers who provide

a reference (expert’s summary) to the appropriate BioASQ deliverable about evaluation.

We observe that the Informativeness and Relevance dimensions of the NEWSROOM dataset

are de�ned similarly to Information Recall and Information Precision in the BioASQ dataset

respectively, which are analyzed below (Section 5) in more details.
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4Quality estimation for text
summarization

4.1 Introduction

Quality Estimation (QE) is well established in MT (Bojar et al., 2016; Bojar et al., 2017).

QE methods provide a quality indicator for translations at run-time without relying on

human references, typically needed by MT evaluation measures (Papineni et al., 2002;

Banerjee and Lavie, 2005; Denkowski and Lavie, 2014). QE models for MT make use of

large post-edited datasets, that contain machine-generated translations, and apply machine

learning methods to predict post-editing e�ort scores and quality (good/bad) labels. We

apply QE to summarization focusing on quality aspects that re�ect the coherency, the

repetition, the �uency and the readability of the generated texts. Speci�cally, we try to

predict the quality-based scores provided along with the summaries of the corresponding

datasets (Section 3). We refer to the Coherence and Fluency scores of NEWSROOM dataset

and the Repetition and Readability scores of the BioASQ dataset.

4.2 Methods

In this Section, we discuss the methods used for quality estimation. We split them into

two categories, the methods used to assess the quality of the summaries from the news

domain using the NEWSROOM dataset and the methods used to assess the quality of the

summaries from the biomedical domain using the BioASQ dataset.

4.2.1 News domain

In this Section, we focus on the NEWSROOM dataset and we try to �nd (or develop)

methods that can estimate the Fluency and the Coherence human quality scores that are

provided alongside the summaries.

Density: Density, as mentioned in Section 3.2 is an automatically produced measure

published by Grusky et al. (2018).
1

Intuitively, the more sequences copied from the source

1

See the Equation 3.2.
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document(s) to the summary, the more �uent and coherent it would be, since these

sequences are well written and structured by the author(s) of the source document(s).

Hence, we expect that higher scores of Density should correspond to higher scores on

Fluency and Coherence too. We compared the Density scores with the manual scores of

Fluency and Coherence and the results can be found in Table 4.1.

Coverage Similarly to Density, Coverage is also an automatically produced measure

published by Grusky et al. (2018). Intuitively, Coverage measures the percentage of the

summary words that come from the source document so we expect a similar behavior

to Density, higher scores of Coverage should correspond to higher scores on Fluency and

Coherence, too. We compared the Coverage scores with the manual scores of Fluency and

Coherence and the results can be found in Table 4.1.

SUM-QEQ1 (ST) & SUM-QE (MT)Q1: In our experiments, we wanted to include the

existing predictors of Sum-QE trained on the DUC data as in our previous work Xenouleas

et al. (2019). However, in the previous work, we trained the Sum-QE model using a leave-

one-year-out procedure in order to be able to evaluate it in all of the three DUC datasets

(2005–2007) separately. In this work, since we evaluate on the NEWSROOM dataset, we

trained the Sum-QE model using all the three DUC datasets, utilizing all the available data.

Following the training methods presented in our previous work, we trained the Sum-QE

model using the single-task (ST) and multi-task (MT) learning settings. In single-task

learning, we use a separate estimator, one per quality score (Q1, Q5), each having its

own encoder (bert instance) and a linear regression layer on the top in order to learn

predict the corresponding quality score. In multi-task learning, the Sum-QE model uses

multiple linear regression layers on the top of the same bert instance in order to learn

predict more than one quality scores simultaneously. The main di�erence in this work

is that we use only the Q1 (Grammaticality) and Q5 (Structure & Coherence) scores in

the multi-task learning setting which are semantically closer to Fluency and Coherence
respectively avoiding to mix irrelevant quality aspects that may harm our predictions.

Intuitively, the more structured and grammatically correct the summary is, the more well

written and �uently it would be. Hence, higher scores of Grammaticality (Q1) and Structure
& Coherence (Q5) should correspond to higher scores of Fluency. Therefore, SUM-QE Q1
(ST) corresponds to the Q1 estimations of the pretrained Sum-QE model on the DUC data

using only the Q1 scores to drive the training while SUM-QE (MT) Q1 corresponds also

to Q1 estimations of the pre-trained Sum-QE model on DUC data, using though both the

Q1 and Q5 scores to drive the training. These two mentioned measures were compared

only with the Fluency scores and the results can be found in Table 4.1.
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SUM-QEQ5 (ST) & SUM-QE (MT)Q5: These two methods are similar to the previous

ones. Similarly, we trained the Sum-QE model using the single-task (ST) and multi-task

(MT) learning. We only used the Q1 (Grammaticality) and Q5 (Structure & Coherence)
scores in the multi-task learning since the more structured and grammatically correct

is a summary, the more coherent it would be. Hence, higher scores of Grammaticality
(Q1) and Structure & Coherence (Q5) should correspond to higher scores of Coherence.
Therefore, SUM-QEQ5 (ST) corresponds to theQ5 estimations of the pre-trained Sum-QE

model on the DUC data, using only the Q5 scores to drive the training and SUM-QE (MT)

Q5 corresponds also to Q5 estimations of the pre-trained Sum-QE model, on the DUC

data, using though both the Q1 and Q5 scores to drive the training. These two mentioned

measures were compared only with the Coherence scores and the results can be found in

Table 4.1.

AVG: Since the above described methods seemed to work well, we decided to combine

them using a simple way at �rst. For Coherence estimation, we averaged the scores from

the frozen Q5 predictor of Sum-QE, trained on the DUC data, with Coverage and Density
scores. A similar procedure was applied to the Fluency estimation we averaged the scores

from the frozen Q1 predictor of Sum-QE, trained on the DUC data, with Coverage and

Density. The results can be found in the Table 4.1 as AVG (Q1, Density, Coverage) on

Fluency estimation and AVG (Q5, Density, Coverage) on Coherence estimation.

Figure 4.1.: Training process of the linear regressor using the frozen Sum-QE predictors, trained

on the DUC datasets using single-task learning, and the automatically produced scores

Coverage and Density that provided along the NEWSROOM dataset.

Linear regression (LR): We did not just rely only on the simple combination using

average, we also used a linear regressor (LR) to learn to weight appropriately the linguistic

quality aspects alongside the Density and Coverage scores in order to produce better quality

estimations. Since we have ensured that, using the LR, the input scores will not be equally

treated, as in the above case where the average was used, we decided to include the

predictions from all the pre-trained, on DUC data, Sum-QE predictors (Q1,...,Q5) to the

model. Hence, the estimations from the Sum-QE predictors alongside the Density and the

Coverage scores, form the input of the model. We trained the model using single-task
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and multi-task learning, as described above. In Figure 4.1, we can see an illustration of

the pipeline. Since he had only 420 human evaluated system summaries, as mentioned in

Section 3.2, we trained the LR using a 5-fold cross validation procedure. For each fold, the

model was trained six independent times. The predictions for each test summary of the

fold, were calculated by averaging the six predicted scores by each independent training

procedure.
2

The results can be found in Table 4.1 as LR (Q1, ...,Q5, Density, Coverage).
Additionally, we checked how well can estimate the Fluency and the Coherence scores

an average of the predictions from all the Sum-QE predictors (Q1,...,Q5) alongside the

Density and the Coherence and can be found as AVG (Q1, ...,Q5, Density, Coverage) in

Table 4.1.

4.2.2 Biomedical domain

In this Section, we focus on the BioASQ dataset and try to �nd (or develop) methods that

can assess the quality of a biomedical summary observing the amount of repetition in

the text and how readable it is. We try to estimate the Repetition and Readability scores

provided alongside the summaries of the BioASQ dataset.

SUM-QE Q1 (ST) & SUM-QE Q2 (ST): Similarly to the news data, we used the pre-

trained, on the DUC dataset, Sum-QE predictors Q1 (Grammaticality) and Q2 (Non re-
dundancy) using single-task learning (ST) in order to estimate the Readability and the

Repetition of a biomedical summary respectively. Intuitively, a grammatically correct sum-

mary will be easier to be read, so the higher scores of Grammaticality should correspond

to higher scores of Readability. Similarly, the less redundant information a summary

contains, the fewer repetitions it will have, so the higher scores of Non redundancy should

correspond to higher scores of Repetition, according to the exact de�nitions (Section 3).

Hence, we compared the estimations of the Grammaticality with the Readability scores

and the estimations of Non redundancy with the Repetition scores. The results are shown

in the Table 4.2 as SUM-QE Q1 (ST) and SUM-QE Q2 (ST).

SUM-QEREAD (ST), SUM-QE (MT)READ&SUM-QEREP (ST), SUM-QE (MT)REP:

Similarly to the methods SUM-QEQ1 (ST), SUM-QE (MT)Q1, we used the Sum-QE model

and trained it on the biomedical summaries. The di�erence is that we used the Readability
and the Repetition scores on the single-task or a multi-task learning in order to drive the

training. The results, evaluating on the test data are shown in the Table 4.2.

2

In the Appendix A.1.1, we can see the mae curves for each fold.
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4.3 Experimental Results

To evaluate our methods for a particular quality-based measure, we used:

1. The micro-average of mae (Equation 2.4) comparing all the predictions to the human

scores of the summaries, regardless of the document (or the question) they summarise

(or answer). This is also our main evaluation factor and the comparison between

each measurement was conducted by comparing the mae scores achieved from the

human scores.

2. The macro-average of mae (Equation 2.4) across documents (or questions).
3

Along-

side the macro-average of mae, we present the standard error of the mean (sem)

after the ± symbol (Equation 2.5).

3. The Spearman’s ρ (Equation 2.2), Kendall’s τ (Equation 2.1) and Pearson’s r (Equa-

tion 2.3) correlations at the Document level (Section 2.3). Alongside with the cor-

relations, we also present the standard error of the mean (sem) after the ± symbol

(Equation 2.5).

We should mention that the Density scores, produced using the Equation 3.2, and the

Sum-QE scores weren’t in the range [0,1] like the manual scores, so the Mean Absolute

Error (mae) could not be calculated correctly. For this reason, we normalized the predicted

scores produced by these two methods using the formula of z-transformation (4.1) and a

5-fold cross-validation procedure to compute the mae. In each fold, the scores from one

set were normalized using µ and σ calculated on the four remaining sets. The Coverage
scores produced by the Equation 3.1 and all the other methods were already in [0,1] so no

further processing was required.

Z_score = x− µ
3σ (4.1)

Since 3σ in the denominator of the equation captures the 99.9% of a normal distribution,

we clipped the Z_score to [0,1] to ensure that all the predictions would be in this range.

We also kept the original scores to calculate the correlations, since the scores do not need

to be normalized in this case.

Before analyzing the results from the models that required training, we should notice, in

Table 4.1 the Density measure provides a very good estimation for both the Coherence
and Fluency scores achieving very small mae. On the other hand, the Sum-QE predictors,

trained on the DUC data, did not reduce as much the mae as we expected. On the Fluency
estimation, a small reduction was obtained, from 0.166 (that Density achieved) to 0.161

3

On NEWSROOM dataset, all the 7 systems constructed a summary for all the 60 articles, so none is missing.

Therefore, the mae on the micro is the same with mae on the macro level.
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NEWSROOM quality estimations

Method mae ρ τ r

C
oh
er
en
ce

Coverage 0.300 0.379 ± 0.045 0.326 ± 0.037 0.522 ± 0.266

Density 0.155 0.675 ± 0.030 0.574 ± 0.574 0.656 ± 0.220

SUM-QE Q5 (ST) 0.163 0.519 ± 0.046 0.437 ± 0.040 0.533 ± 0.045

SUM-QE (MT) Q5 0.175 0.398 ± 0.053 0.339 ± 0.045 0.403 ± 0.055

AVG (Q5, Density, Coverage) 0.139 0.692 ± 0.033 0.588 ± 0.031 0.699 ± 0.031

AVG (Q1, ...,Q5, Density, Coverage) 0.145 0.610 ± 0.039 0.518 ± 0.036 0.636 ± 0.038

LR (Q1, ...,Q5, Density, Coverage) 0.126 0.514 ± 0.045 0.452 ± 0.04 0.568 ± 0.040

Fl
ue
nc
y

Coverage 0.299 0.334 ± 0.047 0.285 ± 0.040 0.460 ± 0.347

Density 0.166 0.636 ± 0.032 0.533 ± 0.030 0.625 ± 0.209

SUM-QE Q1 (ST) 0.161 0.587 ± 0.040 0.488 ± 0.036 0.597 ± 0.037

SUM-QE (MT) Q1 0.168 0.544 ± 0.035 0.432 ± 0.032 0.553 ± 0.035

AVG (Q1, Density, Coverage) 0.151 0.665 ± 0.031 0.557 ± 0.029 0.670 ± 0.032

AVG (Q1, ...,Q5, Density, Coverage) 0.152 0.624 ± 0.036 0.517 ± 0.033 0.660 ± 0.035

LR (Q1, ...,Q5, Density, Coverage) 0.121 0.572 ± 0.037 0.459 ± 0.033 0.608 ± 0.036

Table 4.1.: Mean Absolute Error mae alongside the Spearman’s ρ, Kendall’s τ and Pearson’s

r correlations ± Standard Error of the Mean (sem) between the human (Coherence
and Fluency– Section 3.2) and automatic measures (Coverage, Density, Sum-QE and

combination of Sum-QE predictors) at the document level. Our main evaluation factor

in the mae.

using theQ1 predictor but at the Coherence estimation there was not any reduction on the

mae. However, when we combined the Density and the Coverage scores with the Sum-QE

predictors using average, the error dropped in both Coherence and Fluency measures even

when the predictions from one predictor (Q1 or Q5) or from all the predictors (Q1–Q5)

were included. The best estimation to Coherence and Fluency was achieved when we

combined all the linguistic quality aspects with the Density and Coverage using a linear

regressor and the mae dropped to approx. 0.120 from the gold scores. Hence, all the

linguistic qualities alongside the Density and the Coherence scores can help estimate the

Coherence and the Fluency of a generated text.

BioASQ (2019 Test) quality estimations

Micro Macro
Method mae mae ρ τ r

r
e
a
d

SUM-QE Q1 (ST) 0.263 0.257 ± 0.007 0.233 ± 0.031 0.215 ± 0.029 0.275 ± 0.032

SUM-QE READ (ST) 0.190 0.187 ± 0.005 0.379 ± 0.028 0.351 ± 0.026 0.409 ± 0.031

SUM-QE (MT) READ 0.194 0.189 ± 0.005 0.371 ± 0.028 0.344 ± 0.026 0.409 ± 0.030

r
e
p

SUM-QE Q2 (ST) 0.180 0.177 ± 0.004 0.482 ± 0.029 0.443 ± 0.027 0.482 ± 0.030

SUM-QE REP (ST) 0.150 0.149 ± 0.004 0.572 ± 0.026 0.532 ± 0.024 0.584 ± 0.026

SUM-QE (MT) REP 0.165 0.165 ± 0.004 0.613 ± 0.024 0.571 ± 0.023 0.614 ± 0.025

Table 4.2.: Mean Absolute Error mae on themicro level andmacro mae alongside the Spearman’s

ρ, Kendall’s τ , Pearson’s r correlations ± Standard Error of the Mean (sem) between

human (read: Readability, rep: Repetition– Section 3.3) and automatic measure (Sum-

QE trained on DUC and BioASQ datasets) at the document level using the test data.

Our main evaluation factor in the mae.

On the biomedical quality estimation, we evaluated our methods using both the test and

validation datasets.
4

It should be mentioned that the human scores were in the range [1,

5] and we normalized them in the range [0, 1] to conduct an accurate evaluation. Our

4

The results of the validation dataset can be found in Table A.1 in the Appendix Section A.1.2.
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observations here are that the frozen predictors of the Sum-QE model, trained on news

summaries (SUM-QEQ1 (ST), SUM-QEQ2 (ST)), didn’t perform so well for estimating the

Readability and the Repetition of biomedical summaries. On the contrary, when we trained

the same model (Sum-QE) using as gold scores the Readability and the Repetition and the

biomedical summaries, we achieved better estimations on both the two measures. For the

Readability estimation, the Sum-QE that trained using multi-task learning was the best

achieving 0.198 mae from the gold scores. For the Repetition estimation the best model

was the one trained using single-task learning (SUM-QE REP (ST)) and achieved 0.202 mae

from the manual scores. Hence, we conclude that the Sum-QE model can also be used to

assess the quality of biomedical summaries when we train it at the scores that we want to

estimate.
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5Content estimation for text
summarization

5.1 Introduction

In this chapter, we present an extension to the work of Xenouleas et al. (2019) which

also accounts for content preservation in the automatically generated summaries. The

di�erence from the quality estimation that we described previously in Section 4 is in that

case we did not need any relevant document to compare with, since in order to observe

whether a summary has good quality characteristics, we could rely only on the system

summary. However, in order to evaluate a system summary for content retention, we

need a reference summary, either a human-written summary or the source document,

to be compared with. We analyze the experiments conducted in order to check whether

the key points of the source document(s) are captured in the system generated summary.

Speci�cally, we try to predict the content-based scores provided along with the datasets

presented in Section 3. These scores are the Information Recall and Information Precision
of the BioASQ dataset alongside the Informativeness and Relevance of the NEWSROOM

dataset. Actually, we mentioned that these measures are semantically similar to each other.

The Information Recall which captures the extent to which a summary contains all the

necessary information, corresponds to the Informativeness measure how well the summary

captures the key points of the article. Additionally, the Information Precision measurement

which captures the extent to which the summary does not contain irrelevant information,

corresponds to the Relevance which captures whether the details provided by the summary

are consistent with details in the article or not.

5.2 Methods

In contrast to quality estimations (chapter 4), we did not divide the methods we exper-

imented with into categories to distinguish the news from the biomedical summaries

content estimation. All the methods were evaluated in both domains.

rouge: We started by calculating the rouge scores (Lin and Hovy, 2003; Lin, 2004) for

each summary regardless of the domain (news or biomedical) it belongs. Although rouge

focuses on surface similarities between peer and human-written (reference) summaries, we
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would expect measurements like Informativeness and Information Recall to be captured, to

some extent, by rouge versions based on long n-grams or longest common subsequences.

The versions appear in Table 5.1 (rouge-w-stop-p and rouge-w-stem-stop-p) are the

ones that perform best on each measurement of the NEWSROOM dataset. In the Table 5.2

we can see the versions (rouge-1-stem-r and rouge-1-stem-stop-r) that perform best

on the validation data, evaluated though on the test data of the BioASQ dataset. The best

versions are obtained among those considered by Graham (2015).

Figure 5.1.: Illustration of cosine similarity between the summary’s and document’s embedding

using sentence-bert transformers to encode the summary and the document.

Sbert Cosine Similarity (CS): It is very common to read a summary that does not

include as many words from the article and has replaced them with synonyms or para-

phrases. In these cases, the n-gram based measures like rouge (Lin and Hovy, 2003; Lin,

2004) and bleu (Papineni et al., 2002) cannot perform good content estimations since

the common n-grams are limited. For this reason, we relied on the word embeddings

(Mikolov et al., 2013; Pennington et al., 2014), which are learned token representations

and can encapsulate many di�erent properties of the words. Speci�cally, we relied on

the contextual embeddings from the bert model (Devlin et al., 2019) which can generate

di�erent vector representations for the same word in di�erent sentences depending on the

surrounding words, which form the context of the target word. By using them, we will be

able to match paraphrases (instead of exact matching), to capture distant dependencies

and also to penalize semantically-critical ordering changes. We used the sentence-bert

(Reimers and Gurevych, 2019) transformers (9 in total) to encode our summaries and

articles in order to compare them and measure the shared content.
1

Starting from the

simplest approach, we calculated the cosine similarity between the source document’s and

summary’s embeddings produced by a sentence-transformer without any further training.

On the BioASQ dataset, we had more than one source documents so we calculated the

similarity of the summary’s embedding with each source document and assigned the

average similarity as an estimation to the content-measure. In all cases, the whole text was

fed into the encoder to produce a single vector. We can see in Figure 5.1 an illustration of

the whole procedure using only one source document but the procedure can be generalized

easily by averaging the produced scores for each available source document. The whole

summary S =< S1, S2...Sn > and document D =< D1, D2...Dm >, with Si and Di

1

We experimented with the following transformers: bert-base-nli-mean-tokens, bert-base-nli-max-

tokens, bert-base-nli-cls-token, bert-large-nli-mean-tokens and bert-large-nli-cls-token
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denoting the vocabulary id of each byte pair encoding (BPE), were treated as one big

sentence, hence the [CLS] embeddings produced by the model, correspond to the whole

summary and document respectively. As known, the bert model has a restriction on the

input length to be not more than 512 BPEs but in our case the system-generated summaries

were not larger than this threshold and most of the source documents were not either.

It should be mentioned that the cosine similarity produces scores in the range [-1, 1] so

in order to compute the mae correctly, we normalized them to [0, 1]. In Table 5.1 we

can see the transformer achieved the best estimations evaluating on the NEWSROOM

dataset. In Table 5.2 the performance of the transformer achieved the best estimations on

the validation set of BioASQ when was used to estimate the corresponding content-based

measurement on the test set can be found. The results from all the transformers used as

encoders can be found in the Appendix (Section A.2.1).
2

Figure 5.2.: Pre-processing of the summary’s and document’s embedding before being given as

input to the linear regressor.

Sbert LR: We tried a better way to compare the embeddings produced by the sentence-

bert transformers adding supervision. Keeping frozen the same encoders as before, we

trained a linear regressor (LR) to learn to weigh the features of the embeddings produced

by the transformers according to the measurement that we want to estimate. The whole

summary and relevant documents were treated again as one big sentence, hence we had two

[CLS] embeddings that we wanted to combine appropriately and produce one vector which

would be the input to the LR. Inspired by the cosine-similarity measure, which has the

product of the L2 norms of the embeddings on the denominator, we added a normalization

layer, which (optionally) normalizes the two embeddings dividing their features by the

L2 norm of the corresponding vector. Additionally, after the normalization layer, inspired

by Reimers and Gurevych (2019) who trained the sbert using the concatenation of the

sentence embeddings u, v alongside the element wise di�erence |u − v|, of sentence

A and sentence B respectively, we added a “combine” layer. This layer is responsible

to combine the two vectors and produce a singe vector that will form the input of the

LR. We experimented with two combination strategies, the element-wise di�erence

~D[CLS] − ~S[CLS] and the element-wise multiplication
~D[CLS] ∗ ~S[CLS]. Both strategies,

produce one vector which encapsulates the information of the comparison and this is

provided as input to theLR to learn to weigh appropriately its features. Similarly to quality

estimation (Section 4.2), we trained the linear regressor using the single-task learning,

2

In Table A.2 can be found the results of the NEWSROOM dataset and in Tables A.4, A.3 the results of the

test and validation sets of the BioASQ dataset respectively.
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trying to learn to predict one score each time, and multi-task learning trying to learn

to predict both of the content-base measurements of each dataset (Informativeness and

Relevance on the NEWSROOM and Information Precision and Information Recall on the

BioASQ dataset) simultaneously. Finally, the predicted score(s) of the linear regressor pass

through a ReLU layer in order to end up with scores in [0,1]. In Figure 5.2 we can see an

illustration of the described pipeline. We trained the regressor using the combinations of

the following options:

1. Transformer model

2. Normalization (norm) or not

3. Combination of vectors using elementwise di�erence (diff) or multiplication (mult)

4. Training using single-task (st) or multi-task learning (mt)

Similarly to the previous experiments, in Tables 5.1, 5.2 we can see the performance of

the transformers that best performed on the NEWSROOM dataset and the transformer

that best performed on the validation set of the BioASQ dataset, evaluated though on the

test set, respectively. The results of the trained regressor using all the possible options

presented can be found in the Appendix (Section A.2.2).
3

Figure 5.3.: Illustration of supert pipeline.

supert & Alt. supert: Turning back to the unsupervised evaluation measures, we

tried the supert model for our content evaluation. Gao et al. (2020) developed an unsuper-

vised, multi-document and reference-free evaluation measure which can be used either

on its own to evaluate system summaries or as a reward function to guide a neural, rein-

forcement learning based summarizer, to generate summaries. Due to the lack of human

written summaries, they developed also a mechanism which constructs a pseudo-reference

summary using the source documents in order to be compared with a system summary.

Gao et al. (2020) tried many di�erent methods to select the salient sentences and compose

a pseudo-reference summary. They started by using simple heuristics, concatenating the

�rst n sentences of each source document treating this as the pseudo-reference. They used

also some graph based heuristics (Erkan and Radev, 2004; Zheng and Lapata, 2019) where

each vertex represents a sentence from the source document(s) and the weight of each edge

corresponds to the similarity of the corresponding sentence pair. The pseudo-reference

in these methods was built by extracting the semantically “central” sentences from each

3

Tables A.5, A.6 correspond to the results of the Informativeness and Relevance estimations of theNEWSROOM

dataset. Tables A.8, A.7 correspond to the results of the Information Precision estimation on the test and

validation sets respectively of the BioASQ dataset and Tables A.10, A.9 correspond to the results of the

Information Recall estimation on the test and validation sets of the same dataset respectively.
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clique observed in the graph avoiding including two sentences of the same clique which

might cause including in the summary sentences reporting very similar information. Fi-

nally, they used the cosine similarity of sentence-bert embeddings in order to obtain the

least semantically similar sentence pairs and concatenate them to compose a summary.

Unfortunately, none of the above methods had better results than the simple heuristics

and they ended up to propose a mechanism that concatenates the �rst 10 sentences of

the original documents treating this as the pseudo reference and comparing it with the

candidate system summary. Also, for news articles, using the �rst sentences of the article as

a reference may be reasonable, because news articles usually start by providing a summary.

In Figure 5.3 we can see an illustration of the supert pipeline. After the selection of the

salient sentences from the source documents, each sentence of the pseudo-reference and

the candidate summary, pass one by one through a shared sentence-bert transformer

which produces a vector for each token of the sentence. Aggregating all the token vectors

from the pseudo-reference and the candidate summary, it calculates the cosine-similarity

matrix with shape (#reference tokens, #summary tokens). This matrix shows how similar

each word of the reference is to each word of the candidate summary and vice-versa. In

the end, using the cosine similarity matrix, three measures can be calculated:

• precision: matches each token of the candidate summary to a token in the reference

by observing the most similar pair and averaging the best similarities over the

summary tokens.

• recall: matches each token of the reference to a token in the candidate summary,

by observing the most similar pair, and averaging the best similarities over the

tokens of the reference.

• f1: the harmonic mean of the precision and recall.

We experimented with all of the three measures that Gao et al. (2020) provided and we

also changed a little bit the published code to conduct some more experiments. Firstly,

apart from the original sentence-bert transformer that supert uses, we tried all the

transformers that were used in the above paragraph where the experiments with sentence-

bert are analyzed.
4

Secondly, we conducted some experiments using the pseudo-reference

mechanism described but we also turned it o� to inspect whether giving the concatenation

of all the documents or the real reference as pseudo-reference, would achieve better

results. Also, on the BioASQ dataset, we had some snippets (relevant word sequences

from the source documents annotated by the experts) and we also checked whether

the concatenation of them, treated as a pseudo-reference, can achieve better results. In

the appendix (Section A.2.3), the results are shown, from all the di�erent options we

followed:

4

supert uses bert-large-nli-stsb-mean-tokens as encoder.
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1. Transformer model.

2. Document type (sd: concatenation of all the source documents, ref: the real refer-

ence, mech: pseudo-reference produced by the published mechanism).

3. Measures (prec: precision, rec: recall and f2)

In Tables 5.1, 5.2 we can see the original version of supert along with the alternative

versions that best performed on the NEWSROOM dataset and on the validation set of

the BioASQ dataset, evaluated though on the test set, respectively. In the Appendix

(Section A.2.3), the results from all the possible combination of the above-mentioned

options, can be found.
5

5.3 Experimental Results

We used the same methods we used to evaluate a quality-base measure and these are:

1. The micro-average of mae (Equation 2.4) comparing all the predictions to the human

scores of the summaries, regardless of the document (or the question) they summarise

(or answer). This is also our main evaluation factor and the comparison between

each measurement was conducted by comparing the mae scores achieved from the

human scores.

2. The macro-average of mae (Equation 2.4) across documents (or questions).
6

Along-

side the macro-average of mae, we present the standard error of the mean (sem)

after the ± symbol (Equation 2.5).

3. The Spearman’s ρ (Equation 2.2), Kendall’s τ (Equation 2.1) and Pearson’s r (Equa-

tion 2.3) correlations at the Document level (Section 2.3). Alongside with the cor-

relations, we also present the standard error of the mean (sem) after the ± symbol

(Equation 2.5).

Unlike the quality estimation (Section 4.3), all the methods we experimented, produce

output in the range of [0, 1], so no further processing was required in order to have accurate

evaluation. We should mention that the results that we see in Table 5.2 are the performance

of the corresponding measures/models that best performed on the validation data.

Starting from rouge, as we expected, the versions based on the Longest Common Sub-

sequences (LCS) statistics, rouge-l and rouge-w, are the best, among those considered

5

In Tables A.11, A.12 the results from the Informativeness and Relevance estimation of the NEWSROOM

dataset can be found, respectively. In Tables A.15, A.16 the results from the Information Recall estimation

on the validation and test sets of the BioASQ dataset are shown, respectively. In Tables A.13, A.14 the

results from the Information Precision estimation on the validation and test sets of the BioASQ dataset are

shown, respectively.

6

On the NEWSROOM dataset, all the 7 systems constructed a summary for all the 60 articles, so none is

missing. Therefore, the mae on the micro is the same with mae on the macro level.
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by Graham (2015), for estimating the Relevance and Informativeness scores of the NEWS-

ROOM dataset respectively. However, this does not hold for the Information Precision
and Information Recall estimations of the BioASQ dataset. rouge -1 achieved the best

results and this probably happens because, based only on unigrams overlaps, there may be

individual biomedical terms on which we can be relied on to make sure that the summary

contains all the necessary information (Information Recall) and does not contain irrelevant

information (Information Precision). Moving on, to the experiments we conducted using

the sentence-bert transformers, we can observe that calculating the cosine similarity

(CS) between the embeddings of the document and the summary, did not improve the

estimations of Informativeness and Relevance of the news-domain summaries compared

to rouge.
7

On the contrary, on the biomedical domain summaries, the estimations of

the Information Precision and Information Recall are improved compared to rouge.
8

This

means that there may not be as many shared n-grams between the biomedical summaries

and documents in order to let rouge work better. However, the di�erent terms the two

texts have included, are semantically close each other, which can be captured by the

sentence-bert embeddings, hence the cosine similarity between them can provide a

better estimation. In the experiments where we trained a linear regressor using as input

the combination of the sentence-bert embeddings from the summary and document,

trying to learn to predict the corresponding measurement(s), it seems that the models

cannot perform accurate estimations for none of the above mentioned measures except

for the Information Recall of the BioASQ dataset.
9 10

In fact, at the Information Recall
estimation, the linear regressor achieved a small mae from the manual scores, equal to 0.161

but was not the best. Finally, the original supert model was not so good at its estimations

but using the “alternative” versions (Alt. supert) described above, we managed to achieve

the lowest mae from the manual scores.
11 12

7

The transformers that best performed on the estimations of Informativeness and Relevance can be found in

Table A.2 as bert-base-nli-cls-token (cs) and bert-base-nli-mean-tokens (cs), respectively.

8

The transformers that best performed on the estimations of the Information Precision and Information Recall
can be found in Table A.4 as bert-base-nli-mean-tokens (cs) and bert-base-nli-max-tokens (cs),

respectively.

9

The transformers that best performed on the estimations of the Informativeness and Relevance can be found

as bert-base-nli-mean-tokens (mt-mult) in Table A.5 and as bert-base-nli-mean-tokens (mt-mult)

in Table A.6.

10

The transformers that best performed on the estimations of the Information Precision and Information Recall
can be found as bert-base-nli-mean-tokens (mt-diff) in Table A.8 and as bert-large-nli-cls-token

(mt-mult) in Table A.10.

11

The alternative version of supert that best performed on the estimations of the Informativeness and

Relevance can be found as bert-base-nli-max-tokens (mech-rec) in Table A.11 and as bert-base-nli-

mean-tokens (sd-f1) in Table A.12, respectively.

12

The alternative version of supert that best performed on the estimations of the Information Precision and

Information Recall can be found as bert-large-nli-stsb-mean-tokens (sd-prec) in Table A.14 and as

bert-base-nli-max-tokens (snip-f1) in Table A.16, respectively.
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NEWSROOM content estimations

Method mae ρ τ r
In
fo
rm

at
iv
en
es
s

rouge-w-stop-p 0.217 0.434 ± 0.044 0.337 ± 0.300 0.272 ± 0.289

Sbert cs 0.279 0.735 ± 0.024 0.627 ± 0.026 0.767 ± 0.023

Sbert lr 0.185 0.439 ± 0.043 0.351 ± 0.037 0.536 ± 0.046

supert (recall) 0.194 0.715 ± 0.027 0.611 ± 0.029 0.779 ± 0.022

Alt. supert 0.118 0.711 ± 0.029 0.611 ± 0.030 0.777 ± 0.023

Re
le
va
nc
e

rouge-l-stem-stop-p 0.222 0.440 ± 0.045 0.366 ± 0.039 0.551 ± 0.041

Sbert cs 0.204 0.625 ± 0.030 0.522 ± 0.029 0.780 ± 0.021

Sbert lr 0.179 0.382 ± 0.047 0.289 ± 0.040 0.556 ± 0.044

supert (precision) 0.137 0.530 ± 0.039 0.451 ± 0.036 0.726 ± 0.030

Alt. supert 0.106 0.636 ± 0.027 0.526 ± 0.027 0.794 ± 0.022

Table 5.1.: Mean Absolute Error (mae) alongside the Spearman’s ρ, Kendall’s τ and Pearson’s r
correlations ± Standard Error of the Mean (sem) between human (Informativeness and

Relevance– Section 3.2) and automatic measures (rouge, Sbert cs, Sbert lr, supert

and Alt. supert version) at the document level. The scores of the Sbert cs, Sbert lr,

Alt. supert correspond to the best versions from the ones that we experimented with.

The results for each version can be found in Appendix A.

BioASQ (2019 Test) content estimations

Micro Macro
Method mae mae ρ τ r

In
fo
rm

at
io
n

Pr
ec
is
io
n

rouge -1-stem-r 0.315 0.328 ± 0.008 0.082 ± 0.045 0.075 ± 0.043 0.131 ± 0.044

Sbert cs 0.208 0.201 ± 0.005 -0.045 ± 0.035 -0.048 ± 0.033 0.106 ± 0.038

Sbert lr 0.268 0.262 ± 0.006 0.197 ± 0.032 0.186 ± 0.030 0.255 ± 0.034

supert (precision) 0.196 0.188 ± 0.006 0.216 ± 0.032 0.206 ± 0.031 0.281 ± 0.033

Alt. supert 0.196 0.189 ± 0.005 0.184 ± 0.033 0.170 ± 0.031 0.270 ± 0.033

In
fo
rm

at
io
n

Re
ca
ll

rouge -1-stem-stop-r 0.256 0.266 ± 0.009 0.726 ± 0.023 0.695 ± 0.023 0.738 ± 0.022

Sbert cs 0.179 0.178 ± 0.007 0.611 ± 0.021 0.566 ± 0.020 0.689 ± 0.020

Sbert lr 0.161 0.163 ± 0.008 0.649 ± 0.023 0.635 ± 0.023 0.660 ± 0.023

supert (recall) 0.337 0.330 ± 0.006 0.612 ± 0.021 0.569 ± 0.020 0.686 ± 0.021

Alt. supert 0.160 0.162 ± 0.006 0.640 ± 0.019 0.594 ± 0.018 0.721 ± 0.020

Table 5.2.: Mean Absolute Error (mae) on the micro level and macro mae alongside the Spear-

man’s ρ, Kendall’s τ , Pearson’s r correlations ± Standard Error of the Mean (sem)

between human (Information Precision and Information Recall– Section 3.3) and auto-

matic measures (rouge, Sbert cs, Sbert lr, supert and Alt. supert version) at the

document level. The scores of the Sbert cs, Sbert lr, Alt. supert correspond to the

versions that best performed in the validation data, evaluated though in the test set of

BioASQ dataset. The results for each version that we experimented with can be found

in Appendix A.
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6Conclusions and Future Work

6.1 Conclusion

In this thesis, we addressed the task of automatic evaluation of system generated summaries

considering two dimensions: the quality of the system generated summary which focuses

on quality aspects that re�ect the coherency, the repetition, the �uency and the readability

of the generated text and the extent to which the generated summaries encapsulate the most

important information expressed in the source document(s). We focused on two datasets,

NEWSROOM and BioASQ, which contain summaries alongside human evaluations from

the news and biomedical domain respectively. We compared the assigned scores of each

automatic measure that we evaluated, to the manual scores by computing either the

correlation they have or the mean absolute error between them. The mean absolute error

was our main focus since the ultimate goal was to propose a measure which can be used

independently to evaluate a single-summary, producing accurate estimations close to the

manual scores without relying on the ranking of the evaluated summaries. However, we

conducted an analysis including the correlations at the document level which indicates

that the ranking order of the systems per document, extracted by the automatic scores, is

similar to the one extracted by the manual scores.

At the quality estimation of the news domain, we used the automatically produced scores

provided by Grusky et al. (2018) (Coverage and Density) and the predictors of Sum-QE

(Xenouleas et al., 2019) trained onDUC data. We checked how each one performs separately

and then we combined them using an average or by training a linear regressor to learn

to weight them appropriately. We concluded that the linear combination of all the above-

mentioned scores achieved the best estimations in terms of absolute error. Similarly, on

the quality estimation of the biomedical summaries, we also used our previous Sum-QE

model (Xenouleas et al., 2019) as a starting point. First, we checked whether the predictors

of the model, trained on the DUC data, can help estimate the Readability and the Repetition.

We used the predictors of Grammaticality (Q1) and the Non redundancy (Q2) which are

semantically closer to Readability and Repetition. However the pre-trained predictors could

not achieve good estimations so we trained the model from scratch using the biomedical

summaries and as ground truth scores, the scores that we want to estimate (Readability
and the Repetition). Therefore, we trained the model using single-task and multi-task

learning and we managed to produce better estimations achieving lower absolute error

to the manual scores than the pre-trained predictors on the new data. Consequently, the
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Sum-QE model can also handle the data from the biomedical domain and can greatly

improve the estimations of Readability and Repetition.

In the contrast to quality estimation, at the content estimation we couldn’t use the Sum-

QE as a base model since it was developed and trained to capture quality aspects of the

generated-texts. We started by calculating the rouge scores of each summary among the

versions considered by Graham (2015). We concluded that: (i) there was not a common

rouge version that was better to the estimation of all the human-measures; (ii) and the

absolute error of the best versions each time was too high from the manual scores. Moving

forward, we used the sentence transformers (Reimers and Gurevych, 2019) in several

variations using supervision or not. The unsupervised approaches ware to calculate the

cosine similarity between the summary and the source document(s) embeddings produced

by the frozen sentence transformers and to calculate the recall, the precision and the

f1 scores as de�ned by Gao et al. (2020). In order to calculate these scores, we had to

construct a cosine similarity matrix between the word embeddings of the summary and

the compared document, produced by the supert model using as reference article: (a)

the pseudo-reference, produced by the published mechanism of Gao et al. (2020); (b) the

source document(s); or (c) the human-written summary. For the supervised approach, we

trained a linear regressor using as input a vector produced by the comparison (element-

wise subtraction or multiplication) of the sentence-bert embeddings that correspond

to the summary and the source document. We ended up that the unsupervised approach,

using the supert pipeline with slight changes explained in Section 5.2, was the best at the

content estimation of the news or the biomedical data.

6.2 Future Work

In future work, we plan to experiment more with other models even by adjusting them

to a current experimental setup or training them from scratch. SciBERT (Beltagy et al.,

2019) and BioBERT (Lee et al., 2019) are some of these which are domain-speci�c language

representation models based on bert (Devlin et al., 2019), pre-trained on a large-scale

of scienti�c and biomedical data respectively. Adjusting the above mentioned models

to our current experimental setup, we can get better representations, especially for the

biomedical data, even keeping them frozen, which can encapsulate more information from

the summary and source document(s) and the comparison between them may improve the

content estimation. Also, these models can be �ne tuned to our biomedical data trying

to predict the manual scores (e.g. Information Recall) producing even better embeddings

which can be utilized appropriately to other tasks. A di�erent approach which would also

be interesting to examine is to use the Sum-QE model trained on DUC data, having learned

to predict a speci�c measure (e.g., Grammaticality) and �ne tune it on the NEWSROOM

data, trying to predict a similar measure (e.g., Fluency) in order to observe whether it
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can improve even more the estimations utilizing the pre-trained weights from the news

data.
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AAppendix

A.1 Additional results for quality estimation

A.1.1 Linear Regression (LR)

Below we can see the training and validation mae curves of the �ve-fold cross validation

procedure that used to train a linear regressor in order to learn predict the Fluency and

the Coherence scores. The model use as input the predictions of the pre-trained Sum-QE

predictors alongside the Density and Coverage scores. Speci�cally, we can see 10 �gures (5

per measure) with the mae curves for each one of the six independent training procedures

that used to obtain more accurate predictions.

Figure A.1.: The mae curves from the six independently training procedures of the LR trying to

learn to predict the Coherence scores of the �rst fold.
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Figure A.2.: The mae curves from the six independently training procedures of the LR trying to

learn to predict the Coherence scores of the second fold.

Figure A.3.: The mae curves from the six independently training procedures of the LR trying to

learn to predict the Coherence scores of the third fold.
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Figure A.4.: The mae curves from the six independently training procedures of the LR trying to

learn to predict the Coherence scores of the fourth fold.

Figure A.5.: The mae curves from the six independently training procedures of the LR trying to

learn to predict the Coherence scores of the �fth fold.
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Figure A.6.: The mae curves from the six independently training procedures of the LR trying to

learn to predict the Fluency scores of the �rst fold.

Figure A.7.: The mae curves from the six independently training procedures of the LR trying to

learn to predict the Fluency scores of the second fold.
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Figure A.8.: The mae curves from the six independently training procedures of the LR trying to

learn to predict the Fluency scores of the third fold.

Figure A.9.: The mae curves from the six independently training procedures of the LR trying to

learn to predict the Fluency scores of the fourth fold.
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Figure A.10.: The mae curves from the six independently training procedures of the LR trying to

learn to predict the Fluency scores of the �fth fold.

A.1.2 Validation results on biomedical quality estimation

Below we can see the results of the measures that we experimented with to assess the

quality of a biomedical summary. We can see that the pre-trained predictors of the Sum-QE

on the DUC data cannot perform accurate estimations, achieving big mae from the gold

scores. On the other hand the Sum-QE model, trained on the biomedical data trying to

predict the scores that we want to estimate, managed to reduce the mae.

BioASQ (2018 Val) quality estimations

Micro Macro
Method mae mae ρ τ r

r
e
a
d

SUM-QE Q1 (ST) 0.267 0.274 ± 0.006 0.116 ± 0.021 0.101 ± 0.018 0.171 ± 0.024

SUM-QE READ (ST) 0.215 0.220 ± 0.005 0.392 ± 0.017 0.337 ± 0.015 0.421 ± 0.020

SUM-QE (MT) READ 0.198 0.204 ± 0.005 0.384 ± 0.017 0.330 ± 0.015 0.409 ± 0.019

r
e
p

SUM-QE Q2 (ST) 0.237 0.232 ± 0.005 0.363 ± 0.019 0.302 ± 0.016 0.385 ± 0.020

SUM-QE REP (ST) 0.202 0.200 ± 0.004 0.503 ± 0.017 0.429 ± 0.015 0.531 ± 0.018

SUM-QE (MT) REP 0.202 0.201 ± 0.004 0.557 ± 0.015 0.478 ± 0.014 0.580 ± 0.017

Table A.1.: Mean Absolute Error mae on themicro level andmacro mae alongside the Spearman’s

ρ, Kendall’s τ and Pearson’s r correlations± Standard Error of the Mean (sem) between

human (read: Readability, rep: Repetition– Section 3.3) and automatic measure (Sum-

QE trained on DUC and BioASQ datasets) at the document level using the validation

data.
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A.2 Additional results for content estimation

A.2.1 Sbert Cosine Similarity (CS)

Below we can see the performance of each sentence-bert transformer used in Section

5.2 to estimate the amount of shared information between the article and the summary

calculating the cosine similarity between their embeddings. The results can be found in the

Tables below by the name of the transformer that used as encoder, followed by (cs) (e.g.,

bert-base-nli-cls-token (cs)). We should mention that the name of each model indicates

the way it was trained. For example the model bert-base-nli-cls-token uses the bert

base model trained on the nli datasets Bowman et al., 2015; Williams et al., 2018 performing

a mean pooling to all the output vectors. Reimers and Gurevych (2019) experimented with

three pooling strategies: Using the output of the CLS-token, computing the mean of all

the output vectors (MEANstrategy), and computing a max-over-time of the output vectors

(MAX-strategy)

NEWSROOM content estimations

Transformer mae ρ τ r

In
fo
rm

at
iv
en
es
s

bert-base-nli-mean-tokens (cs) 0.270 0.711 ± 0.026 0.607 ± 0.027 0.773 ± 0.022

bert-base-nli-max-tokens (cs) 0.352 0.727 ± 0.028 0.617 ± 0.029 0.783 ± 0.023

bert-base-nli-cls-token (cs) 0.279 0.735 ± 0.024 0.627 ± 0.026 0.767 ± 0.023

bert-large-nli-mean-tokens (cs) 0.286 0.710 ± 0.031 0.608 ± 0.031 0.776 ± 0.025

bert-large-nli-cls-token (cs) 0.281 0.723 ± 0.032 0.620 ± 0.034 0.775 ± 0.025

Re
le
va
nc
e

bert-base-nli-mean-tokens (cs) 0.204 0.625 ± 0.030 0.522 ± 0.029 0.780 ± 0.021

bert-base-nli-max-tokens (cs) 0.282 0.633 ± 0.030 0.533 ± 0.030 0.788 ± 0.021

bert-base-nli-cls-token (cs) 0.211 0.640 ± 0.029 0.536 ± 0.028 0.772 ± 0.022

bert-large-nli-mean-tokens (cs) 0.218 0.616 ± 0.032 0.509 ± 0.031 0.778 ± 0.022

bert-large-nli-cls-token (cs) 0.213 0.610 ± 0.034 0.504 ± 0.033 0.773 ± 0.022

Table A.2.: Mean Absolute Error mae alongside the Spearman’s ρ, Kendall’s τ and Pearson’s r
correlations ± Standard Error of the Mean (sem) between human measures (Infor-
mativeness and Relevance– Section 3.2) and the cosine similarity (cs) score between

the summary’s and document’s embedding. The correlations are calculated at the

document level.
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BioASQ (2018 val) content estimations

Micro Macro
Method mae mae ρ τ r

In
fo
rm

at
io
n

Pr
ec
is
io
n

bert-base-nli-mean-tokens (cs) 0.292 0.288 ± 0.007 -0.135 ± 0.025 -0.120 ± 0.022 0.113 ± 0.029

bert-base-nli-max-tokens (cs) 0.307 0.304 ± 0.008 -0.155 ± 0.025 -0.138 ± 0.022 0.100 ± 0.030

bert-base-nli-cls-token (cs) 0.292 0.289 ± 0.007 -0.118 ± 0.025 -0.103 ± 0.022 0.109 ± 0.029

bert-large-nli-mean-tokens (cs) 0.294 0.291 ± 0.007 -0.141 ± 0.025 -0.125 ± 0.022 0.089 ± 0.030

bert-large-nli-cls-token (cs) 0.292 0.289 ± 0.007 -0.131 ± 0.025 -0.115 ± 0.022 0.096 ± 0.030

In
fo
rm

at
io
n

Re
ca
ll

bert-base-nli-mean-tokens (cs) 0.207 0.205 ± 0.006 0.471 ± 0.018 0.414 ± 0.016 0.586 ± 0.020

bert-base-nli-max-tokens (cs) 0.205 0.202 ± 0.007 0.476 ± 0.018 0.419 ± 0.016 0.585 ± 0.020

bert-base-nli-cls-token (cs) 0.209 0.207 ± 0.006 0.454 ± 0.018 0.400 ± 0.016 0.582 ± 0.020

bert-large-nli-mean-tokens (cs) 0.207 0.205 ± 0.006 0.466 ± 0.018 0.410 ± 0.017 0.583 ± 0.020

bert-large-nli-cls-token (cs) 0.209 0.206 ± 0.006 0.455 ± 0.018 0.400 ± 0.017 0.579 ± 0.020

Table A.3.: Mean Absolute Error mae on themicro level andmacro mae alongside the Spearman’s

ρ, Kendall’s τ and Pearson’s r correlations± Standard Error of the Mean (sem) between

human measures (Information Precision and Information Recall– Section 3.3) and the

cosine similarity (cs) score between the summary’s and document’s embedding. The

correlations are calculated at the document level.

BioASQ (2019 Test) content estimations

Micro Macro
Method mae mae ρ τ r

In
fo
rm

at
io
n

Pr
ec
is
io
n

bert-base-nli-mean-tokens (cs) 0.208 0.201 ± 0.005 -0.045 ± 0.035 -0.048 ± 0.033 0.106 ± 0.038

bert-base-nli-max-tokens (cs) 0.207 0.198 ± 0.007 -0.063 ± 0.035 -0.066 ± 0.033 0.095 ± 0.038

bert-base-nli-cls-token (cs) 0.208 0.200 ± 0.005 -0.020 ± 0.035 -0.025 ± 0.033 0.108 ± 0.038

bert-large-nli-mean-tokens (cs) 0.209 0.201 ± 0.005 -0.029 ± 0.035 -0.034 ± 0.033 0.114 ± 0.038

bert-large-nli-cls-token (cs) 0.207 0.199 ± 0.005 -0.021 ± 0.035 -0.026 ± 0.033 0.122 ± 0.038

In
fo
rm

at
io
n

Re
ca
ll

bert-base-nli-mean-tokens (cs) 0.189 0.188 ± 0.006 0.601 ± 0.021 0.556 ± 0.020 0.680 ± 0.021

bert-base-nli-max-tokens (cs) 0.179 0.178 ± 0.007 0.611 ± 0.021 0.566 ± 0.020 0.689 ± 0.020

bert-base-nli-cls-token (cs) 0.191 0.190 ± 0.006 0.568 ± 0.023 0.527 ± 0.022 0.667 ± 0.022

bert-large-nli-mean-tokens (cs) 0.187 0.186 ± 0.006 0.600 ± 0.021 0.556 ± 0.020 0.688 ± 0.021

bert-large-nli-cls-token (cs) 0.189 0.188 ± 0.006 0.587 ± 0.022 0.544 ± 0.021 0.681 ± 0.022

Table A.4.: Mean Absolute Error mae alongside the Spearman’s ρ, Kendall’s τ and Pearson’s r
correlations± Standard Error of the Mean (sem) between human (Information Precision
and Information Recall– Section 3.3) measures and the cosine similarity (cs) between

the summary’s and document’s embedding. The correlations are calculated at the

document level. BOLD indicates the performance of the corresponding model that

best performed on the validation data with respect the correlation level or the mae
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A.2.2 Sbert LR

Below we can see the results from the experiments conducted where we trained a linear

regressor (LR) to learn to weight the features of the embeddings produced by the sentence-

bert transformers according to the measurement that we want to estimate. Below we

can see the performance of each transformer that used alongside the prepossessing of the

embeddings before passing through to the LR.

• (mt) indicates the Multi-Task and (st) the single task learning which is followed by

the LR in order to be trained.

• (mult) indicates that the embeddings combined using element wise multiplication

and (diff) the element-wise di�erence before passing through the LR.

• (norm) indicates that the embeddings were normalized using the L2 norm before

the combination of them.

For example, the bert-large-nli-mean-tokens (mt-diff-norm) indicates that we used

the bert-large-nli-mean-tokens transformer as encoder for the summary and reference

and the produced embeddings were normalized and combined using the element-wise

di�erence before passing through the regressor.
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NEWSROOM Informativeness estimations

Transformer mae ρ τ r

bert-base-nli-mean-tokens (st-mult-norm) 0.379 0.447 ± 0.054 0.401 ± 0.049 0.518 ± 0.057

bert-base-nli-mean-tokens (st-mult) 0.189 0.346 ± 0.044 0.266 ± 0.036 0.511 ± 0.040

bert-base-nli-mean-tokens (st-diff-norm) 0.363 0.179 ± 0.047 0.142 ± 0.041 0.270 ± 0.050

bert-base-nli-mean-tokens (st-diff) 0.231 0.275 ± 0.054 0.218 ± 0.045 0.402 ± 0.050

bert-base-nli-mean-tokens (mt-mult-norm) 0.357 0.579 ± 0.027 0.520 ± 0.025 0.623 ± 0.032

bert-base-nli-mean-tokens (mt-mult) 0.185 0.439 ± 0.043 0.351 ± 0.037 0.536 ± 0.046

bert-base-nli-mean-tokens (mt-diff-norm) 0.382 0.078 ± 0.055 0.058 ± 0.047 0.108 ± 0.056

bert-base-nli-mean-tokens (mt-diff) 0.223 0.253 ± 0.048 0.191 ± 0.040 0.409 ± 0.046

bert-base-nli-max-tokens (st-mult-norm) 0.402 0.308 ± 0.093 0.277 ± 0.083 0.344 ± 0.089

bert-base-nli-max-tokens (st-mult) 0.382 0.291 ± 0.042 0.259 ± 0.038 0.330 ± 0.040

bert-base-nli-max-tokens (st-diff-norm) 0.364 -0.001 ± 0.057 -0.006 ± 0.049 0.041 ± 0.058

bert-base-nli-max-tokens (st-diff) 0.285 0.067 ± 0.051 0.055 ± 0.041 0.132 ± 0.052

bert-base-nli-max-tokens (mt-mult-norm) 0.413 0.212 ± 0.091 0.192 ± 0.083 0.229 ± 0.087

bert-base-nli-max-tokens (mt-mult) 0.379 0.288 ± 0.058 0.253 ± 0.052 0.304 ± 0.059

bert-base-nli-max-tokens (mt-diff-norm) 0.401 -0.165 ± 0.054 -0.137 ± 0.046 -0.160 ± 0.056

bert-base-nli-max-tokens (mt-diff) 0.270 0.107 ± 0.053 0.081 ± 0.043 0.149 ± 0.055

bert-base-nli-cls-token (st-mult-norm) 0.372 0.450 ± 0.044 0.398 ± 0.039 0.521 ± 0.047

bert-base-nli-cls-token (st-mult) 0.194 0.424 ± 0.041 0.337 ± 0.036 0.526 ± 0.042

bert-base-nli-cls-token (st-diff-norm) 0.363 0.084 ± 0.053 0.065 ± 0.045 0.161 ± 0.055

bert-base-nli-cls-token (st-diff) 0.238 0.240 ± 0.051 0.193 ± 0.042 0.357 ± 0.051

bert-base-nli-cls-token (mt-mult-norm) 0.376 0.443 ± 0.054 0.396 ± 0.049 0.490 ± 0.063

bert-base-nli-cls-token (mt-mult) 0.206 0.339 ± 0.042 0.263 ± 0.036 0.440 ± 0.043

bert-base-nli-cls-token (mt-diff-norm) 0.368 0.047 ± 0.046 0.036 ± 0.038 0.122 ± 0.055

bert-base-nli-cls-token (mt-diff) 0.228 0.363 ± 0.043 0.290 ± 0.037 0.487 ± 0.040

bert-large-nli-mean-tokens (st-mult-norm) 0.375 0.470 ± 0.051 0.423 ± 0.046 0.547 ± 0.051

bert-large-nli-mean-tokens (st-mult) 0.253 0.284 ± 0.042 0.220 ± 0.035 0.445 ± 0.043

bert-large-nli-mean-tokens (st-diff-norm) 0.381 0.038 ± 0.060 0.026 ± 0.052 0.083 ± 0.059

bert-large-nli-mean-tokens (st-diff) 0.272 0.062 ± 0.059 0.046 ± 0.048 0.144 ± 0.061

bert-large-nli-mean-tokens (mt-mult-norm) 0.390 0.303 ± 0.062 0.274 ± 0.056 0.353 ± 0.069

bert-large-nli-mean-tokens (mt-mult) 0.284 0.298 ± 0.040 0.239 ± 0.034 0.426 ± 0.043

bert-large-nli-mean-tokens (mt-diff-norm) 0.354 0.132 ± 0.061 0.119 ± 0.052 0.177 ± 0.061

bert-large-nli-mean-tokens (mt-diff) 0.279 0.062 ± 0.059 0.047 ± 0.047 0.147 ± 0.057

bert-large-nli-cls-token (st-mult-norm) 0.382 0.369 ± 0.059 0.329 ± 0.053 0.435 ± 0.062

bert-large-nli-cls-token (st-mult) 0.276 0.350 ± 0.051 0.296 ± 0.044 0.496 ± 0.052

bert-large-nli-cls-token (st-diff-norm) 0.379 0.044 ± 0.054 0.039 ± 0.046 0.069 ± 0.055

bert-large-nli-cls-token (st-diff) 0.264 0.207 ± 0.052 0.168 ± 0.045 0.324 ± 0.050

bert-large-nli-cls-token (mt-mult-norm) 0.360 0.463 ± 0.051 0.410 ± 0.046 0.537 ± 0.053

bert-large-nli-cls-token (mt-mult) 0.294 0.330 ± 0.051 0.259 ± 0.044 0.463 ± 0.050

bert-large-nli-cls-token (mt-diff-norm) 0.363 0.090 ± 0.051 0.069 ± 0.044 0.119 ± 0.054

bert-large-nli-cls-token (mt-diff) 0.288 0.154 ± 0.055 0.102 ± 0.045 0.221 ± 0.057

Table A.5.: Mean Absolute Error mae alongside the Spearman’s ρ, Kendall’s τ and Pearson’s r
correlations ± Standard Error of the Mean (sem) between human (Informativeness–
Section 3.2) scores and the scores produced by LR which was trained using the

sentence-bert embeddings of the summary and the document. The correlations

are calculated at the document level.
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NEWSROOM Relevance estimations

Transformer mae ρ τ r

bert-base-nli-mean-tokens (st-mult-norm) 0.327 0.469 ± 0.062 0.430 ± 0.057 0.574 ± 0.070

bert-base-nli-mean-tokens (st-mult) 0.186 0.303 ± 0.048 0.236 ± 0.043 0.496 ± 0.047

bert-base-nli-mean-tokens (st-diff-norm) 0.359 -0.140 ± 0.044 -0.121 ± 0.038 -0.131 ± 0.041

bert-base-nli-mean-tokens (st-diff) 0.255 0.001 ± 0.053 -0.003 ± 0.043 0.080 ± 0.062

bert-base-nli-mean-tokens (mt-mult-norm) 0.333 0.367 ± 0.071 0.334 ± 0.064 0.396 ± 0.086

bert-base-nli-mean-tokens (mt-mult) 0.179 0.382 ± 0.047 0.289 ± 0.040 0.556 ± 0.044

bert-base-nli-mean-tokens (mt-diff-norm) 0.365 -0.166 ± 0.050 -0.138 ± 0.044 -0.157 ± 0.042

bert-base-nli-mean-tokens (mt-diff) 0.247 0.154 ± 0.052 0.108 ± 0.045 0.236 ± 0.056

bert-base-nli-max-tokens (st-mult-norm) 0.342 0.598 ± 0.037 0.545 ± 0.036 0.726 ± 0.065

bert-base-nli-max-tokens (st-mult) 0.401 0.329 ± 0.037 0.295 ± 0.034 0.397 ± 0.034

bert-base-nli-max-tokens (st-diff-norm) 0.330 -0.117 ± 0.054 -0.091 ± 0.046 -0.104 ± 0.056

bert-base-nli-max-tokens (st-diff) 0.321 -0.248 ± 0.049 -0.209 ± 0.044 -0.217 ± 0.048

bert-base-nli-max-tokens (mt-mult-norm) 0.343 0.332 ± 0.169 0.304 ± 0.153 0.295 ± 0.187

bert-base-nli-max-tokens (mt-mult) 0.327 0.361 ± 0.061 0.325 ± 0.055 0.364 ± 0.075

bert-base-nli-max-tokens (mt-diff-norm) 0.344 -0.084 ± 0.055 -0.077 ± 0.049 -0.022 ± 0.061

bert-base-nli-max-tokens (mt-diff) 0.296 0.037 ± 0.043 0.022 ± 0.036 0.138 ± 0.048

bert-base-nli-cls-token (st-mult-norm) 0.327 0.450 ± 0.056 0.407 ± 0.050 0.528 ± 0.071

bert-base-nli-cls-token (st-mult) 0.200 0.244 ± 0.047 0.199 ± 0.040 0.382 ± 0.053

bert-base-nli-cls-token (st-diff-norm) 0.343 -0.023 ± 0.062 -0.025 ± 0.054 -0.011 ± 0.060

bert-base-nli-cls-token (st-diff) 0.267 -0.055 ± 0.050 -0.045 ± 0.042 0.055 ± 0.055

bert-base-nli-cls-token (mt-mult-norm) 0.333 0.312 ± 0.058 0.283 ± 0.052 0.325 ± 0.072

bert-base-nli-cls-token (mt-mult) 0.210 0.184 ± 0.047 0.134 ± 0.039 0.331 ± 0.052

bert-base-nli-cls-token (mt-diff-norm) 0.315 0.249 ± 0.050 0.217 ± 0.044 0.304 ± 0.056

bert-base-nli-cls-token (mt-diff) 0.244 0.103 ± 0.058 0.072 ± 0.047 0.181 ± 0.060

bert-large-nli-mean-tokens (st-mult-norm) 0.336 0.361 ± 0.081 0.319 ± 0.074 0.368 ± 0.092

bert-large-nli-mean-tokens (st-mult) 0.289 0.134 ± 0.053 0.121 ± 0.047 0.202 ± 0.060

bert-large-nli-mean-tokens (st-diff-norm) 0.351 0.022 ± 0.064 0.015 ± 0.056 0.127 ± 0.067

bert-large-nli-mean-tokens (st-diff) 0.335 -0.242 ± 0.051 -0.207 ± 0.046 -0.217 ± 0.046

bert-large-nli-mean-tokens (mt-mult-norm) 0.326 0.398 ± 0.073 0.361 ± 0.066 0.472 ± 0.081

bert-large-nli-mean-tokens (mt-mult) 0.327 0.214 ± 0.054 0.191 ± 0.048 0.264 ± 0.054

bert-large-nli-mean-tokens (mt-diff-norm) 0.342 0.065 ± 0.053 0.053 ± 0.048 0.177 ± 0.056

bert-large-nli-mean-tokens (mt-diff) 0.355 -0.317 ± 0.046 -0.285 ± 0.041 -0.255 ± 0.041

bert-large-nli-cls-token (st-mult-norm) 0.332 0.299 ± 0.072 0.265 ± 0.065 0.356 ± 0.082

bert-large-nli-cls-token (st-mult) 0.295 0.264 ± 0.052 0.244 ± 0.046 0.273 ± 0.057

bert-large-nli-cls-token (st-diff-norm) 0.352 0.054 ± 0.055 0.043 ± 0.048 0.034 ± 0.057

bert-large-nli-cls-token (st-diff) 0.272 0.295 ± 0.042 0.222 ± 0.036 0.423 ± 0.046

bert-large-nli-cls-token (mt-mult-norm) 0.326 0.440 ± 0.054 0.401 ± 0.049 0.506 ± 0.069

bert-large-nli-cls-token (mt-mult) 0.306 0.114 ± 0.056 0.101 ± 0.049 0.227 ± 0.064

bert-large-nli-cls-token (mt-diff-norm) 0.332 0.109 ± 0.053 0.095 ± 0.047 0.152 ± 0.058

bert-large-nli-cls-token (mt-diff) 0.300 0.025 ± 0.055 0.007 ± 0.045 0.111 ± 0.060

Table A.6.: Mean Absolute Error mae alongside the Spearman’s ρ, Kendall’s τ and Pearson’s r cor-

relations ± Standard Error of the Mean (sem) between human (Relevance– Section 3.2)

scores and the scores produced by LR which was trained using the sentence-bert

embeddings of the summary and the document. The correlations are calculated at the

document level.
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BioASQ (2018 Val) Information Precision estimations

Micro Macro
Method mae mae ρ τ r

bert-base-nli-mean-tokens (st-mult-norm) 0.365 0.349 ± 0.009 0.408 ± 0.046 0.395 ± 0.045 0.453 ± 0.050

bert-base-nli-mean-tokens (st-mult) 0.336 0.321 ± 0.008 0.286 ± 0.027 0.269 ± 0.025 0.380 ± 0.029

bert-base-nli-mean-tokens (st-diff-norm) 0.365 0.360 ± 0.007 0.047 ± 0.020 0.041 ± 0.018 0.031 ± 0.020

bert-base-nli-mean-tokens (st-diff) 0.245 0.251 ± 0.005 0.218 ± 0.020 0.182 ± 0.018 0.302 ± 0.024

bert-base-nli-mean-tokens (mt-mult-norm) 0.359 0.343 ± 0.009 0.227 ± 0.034 0.220 ± 0.033 0.251 ± 0.037

bert-base-nli-mean-tokens (mt-mult) 0.251 0.250 ± 0.006 0.254 ± 0.021 0.217 ± 0.018 0.321 ± 0.024

bert-base-nli-mean-tokens (mt-diff-norm) 0.339 0.336 ± 0.006 0.108 ± 0.020 0.093 ± 0.018 0.104 ± 0.021

bert-base-nli-mean-tokens (mt-diff) 0.236 0.239 ± 0.005 0.297 ± 0.020 0.255 ± 0.018 0.357 ± 0.023

bert-base-nli-max-tokens (st-mult-norm) 0.625 0.640 ± 0.009 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000

bert-base-nli-max-tokens (st-mult) 0.353 0.336 ± 0.009 0.502 ± 0.037 0.487 ± 0.037 0.565 ± 0.041

bert-base-nli-max-tokens (st-diff-norm) 0.309 0.307 ± 0.006 0.167 ± 0.021 0.144 ± 0.018 0.197 ± 0.022

bert-base-nli-max-tokens (st-diff) 0.269 0.270 ± 0.006 0.227 ± 0.022 0.197 ± 0.019 0.209 ± 0.024

bert-base-nli-max-tokens (mt-mult-norm) 0.625 0.640 ± 0.009 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000

bert-base-nli-max-tokens (mt-mult) 0.353 0.334 ± 0.009 0.499 ± 0.037 0.485 ± 0.036 0.563 ± 0.040

bert-base-nli-max-tokens (mt-diff-norm) 0.311 0.312 ± 0.006 0.116 ± 0.020 0.099 ± 0.018 0.147 ± 0.023

bert-base-nli-max-tokens (mt-diff) 0.249 0.251 ± 0.005 0.237 ± 0.020 0.201 ± 0.018 0.303 ± 0.023

bert-base-nli-cls-token (st-mult-norm) 0.367 0.351 ± 0.009 0.366 ± 0.051 0.355 ± 0.050 0.425 ± 0.054

bert-base-nli-cls-token (st-mult) 0.265 0.262 ± 0.006 0.277 ± 0.020 0.238 ± 0.018 0.357 ± 0.023

bert-base-nli-cls-token (st-diff-norm) 0.382 0.374 ± 0.007 0.090 ± 0.020 0.083 ± 0.017 0.109 ± 0.020

bert-base-nli-cls-token (st-diff) 0.243 0.246 ± 0.005 0.247 ± 0.021 0.210 ± 0.018 0.292 ± 0.024

bert-base-nli-cls-token (mt-mult-norm) 0.364 0.348 ± 0.009 0.219 ± 0.036 0.213 ± 0.034 0.253 ± 0.038

bert-base-nli-cls-token (mt-mult) 0.261 0.256 ± 0.006 0.278 ± 0.020 0.242 ± 0.018 0.369 ± 0.023

bert-base-nli-cls-token (mt-diff-norm) 0.351 0.343 ± 0.007 0.143 ± 0.019 0.126 ± 0.017 0.141 ± 0.019

bert-base-nli-cls-token (mt-diff) 0.236 0.240 ± 0.005 0.261 ± 0.020 0.224 ± 0.018 0.311 ± 0.023

bert-large-nli-mean-tokens (st-mult-norm) 0.370 0.355 ± 0.009 0.409 ± 0.056 0.396 ± 0.054 0.443 ± 0.061

bert-large-nli-mean-tokens (st-mult) 0.322 0.313 ± 0.008 0.269 ± 0.022 0.245 ± 0.021 0.310 ± 0.024

bert-large-nli-mean-tokens (st-diff-norm) 0.383 0.376 ± 0.007 0.082 ± 0.020 0.071 ± 0.018 0.072 ± 0.020

bert-large-nli-mean-tokens (st-diff) 0.294 0.292 ± 0.006 0.218 ± 0.022 0.189 ± 0.020 0.211 ± 0.025

bert-large-nli-mean-tokens (mt-mult-norm) 0.365 0.350 ± 0.009 0.145 ± 0.032 0.140 ± 0.030 0.157 ± 0.033

bert-large-nli-mean-tokens (mt-mult) 0.625 0.640 ± 0.009 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000

bert-large-nli-mean-tokens (mt-diff-norm) 0.361 0.355 ± 0.007 0.076 ± 0.020 0.065 ± 0.018 0.064 ± 0.021

bert-large-nli-mean-tokens (mt-diff) 0.253 0.256 ± 0.005 0.286 ± 0.019 0.243 ± 0.017 0.349 ± 0.022

bert-large-nli-cls-token (st-mult-norm) 0.372 0.356 ± 0.009 0.404 ± 0.080 0.394 ± 0.079 0.408 ± 0.083

bert-large-nli-cls-token (st-mult) 0.325 0.319 ± 0.008 0.260 ± 0.023 0.239 ± 0.022 0.334 ± 0.025

bert-large-nli-cls-token (st-diff-norm) 0.375 0.374 ± 0.007 0.043 ± 0.021 0.037 ± 0.018 0.035 ± 0.021

bert-large-nli-cls-token (st-diff) 0.254 0.254 ± 0.005 0.296 ± 0.019 0.257 ± 0.017 0.354 ± 0.022

bert-large-nli-cls-token (mt-mult-norm) 0.364 0.349 ± 0.009 0.195 ± 0.031 0.188 ± 0.030 0.200 ± 0.032

bert-large-nli-cls-token (mt-mult) 0.317 0.308 ± 0.008 0.375 ± 0.021 0.346 ± 0.020 0.414 ± 0.023

bert-large-nli-cls-token (mt-diff-norm) 0.352 0.349 ± 0.007 0.131 ± 0.021 0.115 ± 0.019 0.128 ± 0.022

bert-large-nli-cls-token (mt-diff) 0.249 0.249 ± 0.005 0.294 ± 0.020 0.254 ± 0.018 0.361 ± 0.023

Table A.7.: Mean Absolute Error mae on themicro level andmacro mae alongside the Spearman’s

ρ, Kendall’s τ and Pearson’s r correlations± Standard Error of the Mean (sem) between

human (Information Precision– Section 3.3) scores and the scores produced byLRwhich

was trained using the sentence-bert embeddings of the summary and the document.

The correlations are calculated at the document level.
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BioASQ (2019 Test) Information Precision estimations

Micro Macro
Method mae mae ρ τ r

bert-base-nli-mean-tokens (st-mult-norm) 0.203 0.195 ± 0.008 0.297 ± 0.057 0.292 ± 0.057 0.331 ± 0.059

bert-base-nli-mean-tokens (st-mult) 0.194 0.188 ± 0.007 0.316 ± 0.036 0.303 ± 0.035 0.351 ± 0.037

bert-base-nli-mean-tokens (st-diff-norm) 0.313 0.307 ± 0.009 0.048 ± 0.032 0.046 ± 0.031 0.062 ± 0.032

bert-base-nli-mean-tokens (st-diff) 0.287 0.283 ± 0.006 0.149 ± 0.032 0.140 ± 0.030 0.223 ± 0.034

bert-base-nli-mean-tokens (mt-mult-norm) 0.205 0.197 ± 0.008 0.270 ± 0.046 0.268 ± 0.046 0.279 ± 0.048

bert-base-nli-mean-tokens (mt-mult) 0.265 0.258 ± 0.007 0.238 ± 0.033 0.220 ± 0.031 0.249 ± 0.034

bert-base-nli-mean-tokens (mt-diff-norm) 0.313 0.305 ± 0.008 0.100 ± 0.031 0.095 ± 0.029 0.110 ± 0.032

bert-base-nli-mean-tokens (mt-diff) 0.268 0.262 ± 0.006 0.197 ± 0.032 0.186 ± 0.030 0.255 ± 0.034

bert-base-nli-max-tokens (st-mult-norm) 0.796 0.806 ± 0.008 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000

bert-base-nli-max-tokens (st-mult) 0.202 0.193 ± 0.008 0.323 ± 0.041 0.318 ± 0.040 0.377 ± 0.044

bert-base-nli-max-tokens (st-diff-norm) 0.332 0.331 ± 0.008 0.150 ± 0.033 0.142 ± 0.031 0.180 ± 0.034

bert-base-nli-max-tokens (st-diff) 0.248 0.239 ± 0.006 0.131 ± 0.033 0.124 ± 0.031 0.110 ± 0.033

bert-base-nli-max-tokens (mt-mult-norm) 0.796 0.806 ± 0.008 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000

bert-base-nli-max-tokens (mt-mult) 0.209 0.199 ± 0.008 0.326 ± 0.041 0.321 ± 0.040 0.380 ± 0.043

bert-base-nli-max-tokens (mt-diff-norm) 0.328 0.323 ± 0.008 0.153 ± 0.032 0.146 ± 0.030 0.189 ± 0.032

bert-base-nli-max-tokens (mt-diff) 0.275 0.273 ± 0.006 0.197 ± 0.031 0.182 ± 0.029 0.259 ± 0.033

bert-base-nli-cls-token (st-mult-norm) 0.199 0.190 ± 0.008 0.303 ± 0.055 0.297 ± 0.054 0.356 ± 0.061

bert-base-nli-cls-token (st-mult) 0.243 0.241 ± 0.008 0.194 ± 0.034 0.181 ± 0.032 0.261 ± 0.035

bert-base-nli-cls-token (st-diff-norm) 0.381 0.386 ± 0.010 0.049 ± 0.032 0.044 ± 0.031 0.077 ± 0.033

bert-base-nli-cls-token (st-diff) 0.260 0.253 ± 0.006 0.189 ± 0.032 0.177 ± 0.030 0.223 ± 0.033

bert-base-nli-cls-token (mt-mult-norm) 0.204 0.195 ± 0.008 0.215 ± 0.047 0.210 ± 0.046 0.247 ± 0.050

bert-base-nli-cls-token (mt-mult) 0.227 0.223 ± 0.007 0.214 ± 0.033 0.198 ± 0.031 0.277 ± 0.035

bert-base-nli-cls-token (mt-diff-norm) 0.341 0.343 ± 0.009 0.062 ± 0.032 0.060 ± 0.031 0.089 ± 0.033

bert-base-nli-cls-token (mt-diff) 0.260 0.254 ± 0.006 0.212 ± 0.031 0.200 ± 0.029 0.265 ± 0.032

bert-large-nli-mean-tokens (st-mult-norm) 0.204 0.193 ± 0.008 0.353 ± 0.064 0.346 ± 0.063 0.385 ± 0.068

bert-large-nli-mean-tokens (st-mult) 0.243 0.237 ± 0.009 0.261 ± 0.035 0.250 ± 0.033 0.272 ± 0.035

bert-large-nli-mean-tokens (st-diff-norm) 0.359 0.359 ± 0.010 0.149 ± 0.032 0.142 ± 0.030 0.161 ± 0.032

bert-large-nli-mean-tokens (st-diff) 0.246 0.235 ± 0.006 0.133 ± 0.034 0.126 ± 0.032 0.112 ± 0.034

bert-large-nli-mean-tokens (mt-mult-norm) 0.208 0.197 ± 0.008 0.144 ± 0.047 0.138 ± 0.046 0.156 ± 0.049

bert-large-nli-mean-tokens (mt-mult) 0.796 0.806 ± 0.008 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000

bert-large-nli-mean-tokens (mt-diff-norm) 0.324 0.315 ± 0.008 0.138 ± 0.031 0.133 ± 0.029 0.132 ± 0.030

bert-large-nli-mean-tokens (mt-diff) 0.278 0.276 ± 0.006 0.175 ± 0.031 0.165 ± 0.029 0.252 ± 0.033

bert-large-nli-cls-token (st-mult-norm) 0.204 0.194 ± 0.008 0.223 ± 0.075 0.217 ± 0.074 0.270 ± 0.081

bert-large-nli-cls-token (st-mult) 0.238 0.240 ± 0.009 0.306 ± 0.033 0.290 ± 0.032 0.338 ± 0.035

bert-large-nli-cls-token (st-diff-norm) 0.343 0.338 ± 0.009 -0.009 ± 0.032 -0.005 ±0.031 -0.020 ± 0.033

bert-large-nli-cls-token (st-diff) 0.263 0.255 ± 0.006 0.215 ± 0.031 0.200 ± 0.030 0.279 ± 0.032

bert-large-nli-cls-token (mt-mult-norm) 0.210 0.200 ± 0.008 0.160 ± 0.045 0.155 ± 0.044 0.174 ± 0.046

bert-large-nli-cls-token (mt-mult) 0.232 0.227 ± 0.009 0.338 ± 0.035 0.325 ± 0.034 0.366 ± 0.036

bert-large-nli-cls-token (mt-diff-norm) 0.326 0.317 ± 0.009 0.054 ± 0.032 0.051 ± 0.031 0.082 ± 0.033

bert-large-nli-cls-token (mt-diff) 0.277 0.273 ± 0.006 0.254 ± 0.030 0.236 ± 0.028 0.306 ± 0.031

Table A.8.: Mean Absolute Error mae on themicro level andmacro mae alongside the Spearman’s

ρ, Kendall’s τ and Pearson’s r correlations± Standard Error of the Mean (sem) between

human (Information Precision– Section 3.3) scores and the scores produced byLRwhich

was trained using the sentence-bert embeddings of the summary and the document.

The correlations are calculated at the document level. BOLD indicates the performance

of the corresponding model that best performed on the validation data with respect

the correlation level or the mae
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BioASQ (2018 Val) Information Recall estimations

Micro Macro
Method mae mae ρ τ r

bert-base-nli-mean-tokens (st-mult-norm) 0.182 0.180 ± 0.008 0.608 ± 0.029 0.593 ± 0.029 0.695 ± 0.031

bert-base-nli-mean-tokens (st-mult) 0.168 0.163 ± 0.007 0.551 ± 0.020 0.520 ± 0.019 0.623 ± 0.021

bert-base-nli-mean-tokens (st-diff-norm) 0.364 0.357 ± 0.009 0.203 ± 0.021 0.184 ± 0.019 0.225 ± 0.022

bert-base-nli-mean-tokens (st-diff) 0.213 0.211 ± 0.005 0.271 ± 0.021 0.238 ± 0.019 0.391 ± 0.024

bert-base-nli-mean-tokens (mt-mult-norm) 0.179 0.177 ± 0.008 0.616 ± 0.026 0.599 ± 0.026 0.689 ± 0.028

bert-base-nli-mean-tokens (mt-mult) 0.168 0.164 ± 0.006 0.538 ± 0.018 0.503 ± 0.018 0.632 ± 0.020

bert-base-nli-mean-tokens (mt-diff-norm) 0.296 0.299 ± 0.009 0.221 ± 0.022 0.206 ± 0.021 0.288 ± 0.024

bert-base-nli-mean-tokens (mt-diff) 0.210 0.208 ± 0.005 0.301 ± 0.020 0.263 ± 0.018 0.444 ± 0.023

bert-base-nli-max-tokens (st-mult-norm) 0.182 0.180 ± 0.008 0.676 ± 0.026 0.660 ± 0.026 0.751 ± 0.027

bert-base-nli-max-tokens (st-mult) 0.799 0.802 ± 0.008 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000

bert-base-nli-max-tokens (st-diff-norm) 0.331 0.327 ± 0.008 0.255 ± 0.020 0.223 ± 0.018 0.319 ± 0.021

bert-base-nli-max-tokens (st-diff) 0.230 0.222 ± 0.006 0.370 ± 0.019 0.326 ± 0.017 0.475 ± 0.021

bert-base-nli-max-tokens (mt-mult-norm) 0.183 0.180 ± 0.008 0.652 ± 0.026 0.636 ± 0.027 0.739 ± 0.028

bert-base-nli-max-tokens (mt-mult) 0.169 0.165 ± 0.007 0.658 ± 0.022 0.642 ± 0.022 0.742 ± 0.023

bert-base-nli-max-tokens (mt-diff-norm) 0.300 0.303 ± 0.008 -0.019 ± 0.023 -0.014 ± 0.021 0.031 ± 0.024

bert-base-nli-max-tokens (mt-diff) 0.192 0.187 ± 0.006 0.259 ± 0.022 0.233 ± 0.020 0.381 ± 0.025

bert-base-nli-cls-token (st-mult-norm) 0.181 0.179 ± 0.008 0.607 ± 0.027 0.591 ± 0.027 0.688 ± 0.029

bert-base-nli-cls-token (st-mult) 0.163 0.159 ± 0.007 0.586 ± 0.019 0.560 ± 0.019 0.652 ± 0.020

bert-base-nli-cls-token (st-diff-norm) 0.345 0.337 ± 0.009 0.117 ± 0.021 0.105 ± 0.020 0.136 ± 0.022

bert-base-nli-cls-token (st-diff) 0.231 0.226 ± 0.005 0.347 ± 0.019 0.300 ± 0.017 0.469 ± 0.022

bert-base-nli-cls-token (mt-mult-norm) 0.179 0.176 ± 0.007 0.623 ± 0.026 0.607 ± 0.026 0.699 ± 0.028

bert-base-nli-cls-token (mt-mult) 0.162 0.157 ± 0.007 0.554 ± 0.021 0.532 ± 0.020 0.622 ± 0.022

bert-base-nli-cls-token (mt-diff-norm) 0.301 0.302 ± 0.008 0.112 ± 0.022 0.104 ± 0.021 0.159 ± 0.023

bert-base-nli-cls-token (mt-diff) 0.199 0.199 ± 0.005 0.315 ± 0.019 0.275 ± 0.017 0.451 ± 0.022

bert-large-nli-mean-tokens (st-mult-norm) 0.180 0.175 ± 0.007 0.566 ± 0.028 0.552 ± 0.028 0.626 ± 0.030

bert-large-nli-mean-tokens (st-mult) 0.202 0.195 ± 0.008 0.554 ± 0.021 0.530 ± 0.020 0.589 ± 0.022

bert-large-nli-mean-tokens (st-diff-norm) 0.398 0.386 ± 0.010 0.214 ± 0.019 0.192 ± 0.018 0.238 ± 0.020

bert-large-nli-mean-tokens (st-diff) 0.196 0.191 ± 0.006 0.288 ± 0.021 0.258 ± 0.019 0.415 ± 0.023

bert-large-nli-mean-tokens (mt-mult-norm) 0.180 0.174 ± 0.007 0.567 ± 0.027 0.551 ± 0.027 0.619 ± 0.030

bert-large-nli-mean-tokens (mt-mult) 0.163 0.157 ± 0.007 0.618 ± 0.021 0.599 ± 0.021 0.677 ± 0.022

bert-large-nli-mean-tokens (mt-diff-norm) 0.294 0.297 ± 0.009 0.163 ± 0.023 0.151 ± 0.021 0.213 ± 0.024

bert-large-nli-mean-tokens (mt-diff) 0.184 0.181 ± 0.006 0.356 ± 0.021 0.326 ± 0.019 0.473 ± 0.023

bert-large-nli-cls-token (st-mult-norm) 0.176 0.171 ± 0.007 0.542 ± 0.025 0.527 ± 0.025 0.596 ± 0.027

bert-large-nli-cls-token (st-mult) 0.163 0.157 ± 0.007 0.637 ± 0.020 0.621 ± 0.020 0.709 ± 0.022

bert-large-nli-cls-token (st-diff-norm) 0.350 0.345 ± 0.009 0.210 ± 0.021 0.192 ± 0.019 0.236 ± 0.021

bert-large-nli-cls-token (st-diff) 0.210 0.207 ± 0.007 0.381 ± 0.020 0.344 ± 0.019 0.470 ± 0.022

bert-large-nli-cls-token (mt-mult-norm) 0.178 0.173 ± 0.007 0.584 ± 0.026 0.570 ± 0.026 0.649 ± 0.028

bert-large-nli-cls-token (mt-mult) 0.159 0.155 ± 0.007 0.607 ± 0.021 0.590 ± 0.021 0.670 ± 0.022

bert-large-nli-cls-token (mt-diff-norm) 0.280 0.287 ± 0.008 0.005 ± 0.025 0.005 ± 0.023 0.033 ± 0.025

bert-large-nli-cls-token (mt-diff) 0.180 0.176 ± 0.007 0.337 ± 0.021 0.314 ± 0.020 0.446 ± 0.023

Table A.9.: Mean Absolute Error mae on themicro level andmacro mae alongside the Spearman’s

ρ, Kendall’s τ and Pearson’s r correlations± Standard Error of the Mean (sem) between

human (Information Precision– Section 3.3) scores and the scores produced byLRwhich

was trained using the sentence-bert embeddings of the summary and the document.

The correlations are calculated at the document level.
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BioASQ (2019 Test) Information Recall estimations

Micro Macro
Method mae mae ρ τ r

bert-base-nli-mean-tokens (st-mult-norm) 0.165 0.167 ± 0.009 0.524 ± 0.030 0.516 ± 0.030 0.561 ± 0.032

bert-base-nli-mean-tokens (st-mult) 0.153 0.153 ± 0.007 0.660 ± 0.022 0.637 ± 0.021 0.671 ± 0.022

bert-base-nli-mean-tokens (st-diff-norm) 0.320 0.325 ± 0.010 0.211 ± 0.033 0.204 ± 0.031 0.265 ± 0.032

bert-base-nli-mean-tokens (st-diff) 0.212 0.209 ± 0.007 0.366 ± 0.030 0.338 ± 0.028 0.447 ± 0.030

bert-base-nli-mean-tokens (mt-mult-norm) 0.164 0.165 ± 0.008 0.506 ± 0.031 0.499 ± 0.031 0.539 ± 0.032

bert-base-nli-mean-tokens (mt-mult) 0.163 0.163 ± 0.007 0.624 ± 0.023 0.596 ± 0.023 0.669 ± 0.023

bert-base-nli-mean-tokens (mt-diff-norm) 0.314 0.311 ± 0.010 0.296 ± 0.032 0.284 ± 0.031 0.359 ± 0.032

bert-base-nli-mean-tokens (mt-diff) 0.200 0.197 ± 0.006 0.434 ± 0.028 0.403 ± 0.026 0.541 ± 0.028

bert-base-nli-max-tokens (st-mult-norm) 0.167 0.166 ± 0.009 0.562 ± 0.031 0.553 ± 0.031 0.585 ± 0.032

bert-base-nli-max-tokens (st-mult) 0.825 0.825 ± 0.009 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000

bert-base-nli-max-tokens (st-diff-norm) 0.326 0.327 ± 0.009 0.341 ± 0.029 0.319 ± 0.028 0.411 ± 0.029

bert-base-nli-max-tokens (st-diff) 0.234 0.235 ± 0.007 0.487 ± 0.026 0.453 ± 0.025 0.587 ± 0.025

bert-base-nli-max-tokens (mt-mult-norm) 0.165 0.164 ± 0.009 0.555 ± 0.031 0.546 ± 0.031 0.580 ± 0.032

bert-base-nli-max-tokens (mt-mult) 0.164 0.166 ± 0.009 0.528 ± 0.029 0.520 ± 0.029 0.565 ± 0.030

bert-base-nli-max-tokens (mt-diff-norm) 0.290 0.284 ± 0.009 -0.094 ± 0.034 -0.091 ± 0.032 -0.047 ± 0.036

bert-base-nli-max-tokens (mt-diff) 0.188 0.187 ± 0.007 0.295 ± 0.032 0.276 ± 0.030 0.416 ± 0.032

bert-base-nli-cls-token (st-mult-norm) 0.165 0.164 ± 0.008 0.514 ± 0.033 0.505 ± 0.033 0.533 ± 0.034

bert-base-nli-cls-token (st-mult) 0.158 0.160 ± 0.008 0.629 ± 0.024 0.610 ± 0.024 0.643 ± 0.024

bert-base-nli-cls-token (st-diff-norm) 0.327 0.329 ± 0.010 0.162 ± 0.032 0.154 ± 0.031 0.200 ± 0.032

bert-base-nli-cls-token (st-diff) 0.229 0.227 ± 0.007 0.453 ± 0.027 0.418 ± 0.026 0.553 ± 0.027

bert-base-nli-cls-token (mt-mult-norm) 0.165 0.163 ± 0.008 0.526 ± 0.031 0.517 ± 0.031 0.544 ± 0.032

bert-base-nli-cls-token (mt-mult) 0.157 0.159 ± 0.008 0.652 ± 0.023 0.632 ± 0.023 0.666 ± 0.023

bert-base-nli-cls-token (mt-diff-norm) 0.291 0.288 ± 0.010 0.145 ± 0.037 0.140 ± 0.035 0.199 ± 0.037

bert-base-nli-cls-token (mt-diff) 0.203 0.201 ± 0.006 0.387 ± 0.029 0.361 ± 0.028 0.510 ± 0.028

bert-large-nli-mean-tokens (st-mult-norm) 0.166 0.166 ± 0.008 0.563 ± 0.032 0.553 ± 0.032 0.588 ± 0.032

bert-large-nli-mean-tokens (st-mult) 0.194 0.194 ± 0.009 0.631 ± 0.025 0.614 ± 0.024 0.637 ± 0.025

bert-large-nli-mean-tokens (st-diff-norm) 0.372 0.375 ± 0.012 0.387 ± 0.029 0.367 ± 0.028 0.406 ± 0.028

bert-large-nli-mean-tokens (st-diff) 0.179 0.179 ± 0.007 0.371 ± 0.031 0.350 ± 0.030 0.496 ± 0.030

bert-large-nli-mean-tokens (mt-mult-norm) 0.165 0.165 ± 0.008 0.541 ± 0.032 0.531 ± 0.032 0.562 ± 0.033

bert-large-nli-mean-tokens (mt-mult) 0.157 0.160 ± 0.008 0.672 ± 0.021 0.657 ± 0.021 0.687 ± 0.021

bert-large-nli-mean-tokens (mt-diff-norm) 0.308 0.308 ± 0.010 0.267 ± 0.032 0.255 ± 0.031 0.313 ± 0.032

bert-large-nli-mean-tokens (mt-diff) 0.179 0.182 ± 0.007 0.432 ± 0.029 0.410 ± 0.028 0.522 ± 0.028

bert-large-nli-cls-token (st-mult-norm) 0.168 0.170 ± 0.008 0.552 ± 0.029 0.543 ± 0.029 0.549 ± 0.030

bert-large-nli-cls-token (st-mult) 0.157 0.158 ± 0.008 0.630 ± 0.023 0.619 ± 0.023 0.646 ± 0.024

bert-large-nli-cls-token (st-diff-norm) 0.324 0.321 ± 0.011 0.317 ± 0.031 0.303 ± 0.030 0.363 ± 0.030

bert-large-nli-cls-token (st-diff) 0.212 0.210 ± 0.008 0.538 ± 0.026 0.512 ± 0.025 0.576 ± 0.025

bert-large-nli-cls-token (mt-mult-norm) 0.166 0.168 ± 0.008 0.541 ± 0.029 0.532 ± 0.029 0.567 ± 0.030

bert-large-nli-cls-token (mt-mult) 0.161 0.163 ± 0.008 0.649 ± 0.023 0.635 ± 0.023 0.660 ± 0.023

bert-large-nli-cls-token (mt-diff-norm) 0.278 0.275 ± 0.009 0.026 ± 0.039 0.024 ± 0.038 0.066 ± 0.039

bert-large-nli-cls-token (mt-diff) 0.169 0.169 ± 0.007 0.451 ± 0.028 0.431 ± 0.027 0.535 ± 0.027

Table A.10.: Mean Absolute Error mae on the micro level and macro mae alongside the Spear-

man’s ρ, Kendall’s τ and Pearson’s r correlations ± Standard Error of the Mean (sem)

between human (Information Precision– Section 3.3) scores and the scores produced

by LR which was trained using the sentence-bert embeddings of the summary and

the document. The correlations are calculated at the document level. BOLD indicates

the performance of the corresponding model that best performed on the validation

data with respect the correlation level or the mae.
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A.2.3 supert & Alt. supert

Below we can see the results from the experiments conducted where we used the supert

model for our content evaluation. Speci�cally, we experimented with the same pipeline

published by Gao et al. (2020) but in some of our experiments we changed the sentence-

bert encoder and we disabled the preudo-ref mechanism in order to obtain whether giving

other type of documents can achieve better content estimation. In the tables below, each

name indicates the transformer that we used as encoder alongside the document type and

the output metric.

• (mech) indicates the we used the provided mechanism to build the pseudo-reference.

• (ref) indicates the we used the real reference.

• (sd) indicates that we used the concatenation of all the source documents as pseudo-

reference.

• (snip) indicates that we used the concatenation of the snippets as pseudo-reference

(only in BioASQ dataset).

For example, bert-base-nli-max-tokens (mech-rec) indicates that we used the bert-base-

nli-max-tokens model as encoder comparing the candidate summary with the pseudo-ref

summary produced by the published mechanism mech using the Information Recall (rec)

measure as the estimation. The supert model uses the bert-large-nli-stsb-mean-tokens

as default encoder and the pseudo-ref summary produced by the published mechanism

in order to compare it with the candidate summary. Hence, the names bert-large-nli-

stsb-mean-tokens (mech-rec), bert-large-nli-stsb-mean-tokens (mech-prec) and

bert-large-nli-stsb-mean-tokens (mech-f1) correspond to the original supert model.
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NEWSROOM Informativeness estimations

Transformer mae ρ τ r

bert-base-nli-mean-tokens (ref-rec) 0.188 0.335 ± 0.038 0.293 ± 0.031 0.387 ± 0.045

bert-base-nli-mean-tokens (ref-f1) 0.199 0.229 ± 0.039 0.194 ± 0.033 0.272 ± 0.051

bert-base-nli-mean-tokens (sd-rec) 0.122 0.715 ± 0.027 0.612 ± 0.027 0.776 ± 0.024

bert-base-nli-mean-tokens (sd-f1) 0.125 0.701 ± 0.024 0.593 ± 0.025 0.779 ± 0.024

bert-base-nli-mean-tokens (mech-rec) 0.120 0.694 ± 0.028 0.588 ± 0.029 0.774 ± 0.023

bert-base-nli-mean-tokens (mech-f1) 0.127 0.682 ± 0.029 0.577 ± 0.028 0.770 ± 0.024

bert-base-nli-max-tokens (ref-rec) 0.179 0.347 ± 0.037 0.301 ± 0.033 0.438 ± 0.041

bert-base-nli-max-tokens (ref-f1) 0.190 0.255 ± 0.035 0.217 ± 0.031 0.321 ± 0.048

bert-base-nli-max-tokens (sd-rec) 0.119 0.726 ± 0.027 0.625 ± 0.029 0.778 ± 0.024

bert-base-nli-max-tokens (sd-f1) 0.136 0.699 ± 0.025 0.591 ± 0.027 0.781 ± 0.023

bert-base-nli-max-tokens (mech-rec) 0.118 0.711 ± 0.029 0.611 ± 0.030 0.777 ± 0.023

bert-base-nli-max-tokens (mech-f1) 0.138 0.686 ± 0.030 0.584 ± 0.030 0.772 ± 0.024

bert-base-nli-cls-token (ref-rec) 0.178 0.316 ± 0.039 0.271 ± 0.033 0.390 ± 0.044

bert-base-nli-cls-token (ref-f1) 0.189 0.228 ± 0.040 0.202 ± 0.035 0.257 ± 0.052

bert-base-nli-cls-token (sd-rec) 0.122 0.722 ± 0.025 0.617 ± 0.027 0.775 ± 0.024

bert-base-nli-cls-token (sd-f1) 0.137 0.701 ± 0.026 0.601 ± 0.027 0.778 ± 0.023

bert-base-nli-cls-token (mech-rec) 0.120 0.718 ± 0.025 0.611 ± 0.027 0.773 ± 0.023

bert-base-nli-cls-token (mech-f1) 0.138 0.685 ± 0.030 0.593 ± 0.029 0.765 ± 0.024

bert-large-nli-mean-tokens (ref-rec) 0.177 0.312 ± 0.042 0.266 ± 0.036 0.417 ± 0.045

bert-large-nli-mean-tokens (ref-f1) 0.184 0.229 ± 0.040 0.189 ± 0.035 0.325 ± 0.048

bert-large-nli-mean-tokens (sd-rec) 0.124 0.703 ± 0.027 0.596 ± 0.028 0.766 ± 0.025

bert-large-nli-mean-tokens (sd-f1) 0.151 0.649 ± 0.027 0.547 ± 0.026 0.768 ± 0.024

bert-large-nli-mean-tokens (mech-rec) 0.124 0.674 ± 0.029 0.564 ± 0.030 0.765 ± 0.024

bert-large-nli-mean-tokens (mech-f1) 0.151 0.642 ± 0.032 0.539 ± 0.031 0.758 ± 0.025

bert-large-nli-cls-token (ref-rec) 0.184 0.312 ± 0.040 0.271 ± 0.034 0.374 ± 0.046

bert-large-nli-cls-token (ref-f1) 0.189 0.223 ± 0.042 0.183 ± 0.036 0.274 ± 0.052

bert-large-nli-cls-token (sd-rec) 0.132 0.700 ± 0.024 0.590 ± 0.025 0.767 ± 0.024

bert-large-nli-cls-token (sd-f1) 0.168 0.664 ± 0.027 0.561 ± 0.027 0.765 ± 0.024

bert-large-nli-cls-token (mech-rec) 0.133 0.702 ± 0.024 0.591 ± 0.026 0.763 ± 0.024

bert-large-nli-cls-token (mech-f1) 0.168 0.658 ± 0.030 0.557 ± 0.029 0.752 ± 0.025

bert-large-nli-stsb-mean-tokens (ref-rec) 0.251 0.283 ± 0.041 0.235 ± 0.035 0.309 ± 0.048

bert-large-nli-stsb-mean-tokens (ref-f1) 0.268 0.197 ± 0.042 0.164 ± 0.037 0.200 ± 0.054

bert-large-nli-stsb-mean-tokens (sd-rec) 0.205 0.723 ± 0.027 0.623 ± 0.027 0.784 ± 0.024

bert-large-nli-stsb-mean-tokens (sd-f1) 0.136 0.688 ± 0.025 0.580 ± 0.026 0.778 ± 0.023

bert-large-nli-stsb-mean-tokens (mech-rec) 0.194 0.715 ± 0.027 0.611 ± 0.029 0.779 ± 0.022

bert-large-nli-stsb-mean-tokens (mech-f1) 0.135 0.684 ± 0.028 0.574 ± 0.028 0.762 ± 0.024

Table A.11.: Mean Absolute Error mae alongside the Spearman’s ρ, Kendall’s τ nad Pearson’s r
correlations ± Standard Error of the Mean (sem) between human (Informativeness–
Section 3.2) scores and the scores predicted by the supert and the alternative versions,

as described in Section 5.2. The correlations are calculated at the document level.
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NEWSROOM Relevance estimations

Transformer mae ρ τ r

bert-base-nli-mean-tokens (ref-prec) 0.228 0.159 ± 0.047 0.132 ± 0.040 0.181 ± 0.057

bert-base-nli-mean-tokens (ref-f1) 0.210 0.209 ± 0.044 0.170 ± 0.038 0.276 ± 0.054

bert-base-nli-mean-tokens (sd-prec) 0.169 0.577 ± 0.036 0.476 ± 0.034 0.772 ± 0.025

bert-base-nli-mean-tokens (sd-f1) 0.106 0.636 ± 0.027 0.526 ± 0.027 0.794 ± 0.022

bert-base-nli-mean-tokens (mech-prec) 0.160 0.552 ± 0.036 0.459 ± 0.033 0.737 ± 0.027

bert-base-nli-mean-tokens (mech-f1) 0.108 0.599 ± 0.029 0.497 ± 0.028 0.777 ± 0.022

bert-base-nli-max-tokens (ref-prec) 0.216 0.184 ± 0.047 0.152 ± 0.041 0.218 ± 0.057

bert-base-nli-max-tokens (ref-f1) 0.197 0.225 ± 0.042 0.178 ± 0.037 0.328 ± 0.051

bert-base-nli-max-tokens (sd-prec) 0.181 0.581 ± 0.035 0.483 ± 0.034 0.771 ± 0.025

bert-base-nli-max-tokens (sd-f1) 0.108 0.629 ± 0.031 0.515 ± 0.030 0.792 ± 0.022

bert-base-nli-max-tokens (mech-prec) 0.173 0.547 ± 0.037 0.460 ± 0.035 0.742 ± 0.026

bert-base-nli-max-tokens (mech-f1) 0.110 0.601 ± 0.031 0.497 ± 0.029 0.779 ± 0.022

bert-base-nli-cls-token (ref-prec) 0.212 0.178 ± 0.048 0.148 ± 0.041 0.170 ± 0.058

bert-base-nli-cls-token (ref-f1) 0.194 0.214 ± 0.044 0.167 ± 0.038 0.267 ± 0.054

bert-base-nli-cls-token (sd-prec) 0.183 0.590 ± 0.034 0.496 ± 0.032 0.772 ± 0.024

bert-base-nli-cls-token (sd-f1) 0.109 0.634 ± 0.030 0.524 ± 0.029 0.790 ± 0.021

bert-base-nli-cls-token (mech-prec) 0.174 0.555 ± 0.035 0.471 ± 0.032 0.734 ± 0.027

bert-base-nli-cls-token (mech-f1) 0.111 0.599 ± 0.032 0.495 ± 0.030 0.770 ± 0.022

bert-large-nli-mean-tokens (ref-prec) 0.193 0.169 ± 0.047 0.135 ± 0.040 0.248 ± 0.054

bert-large-nli-mean-tokens (ref-f1) 0.179 0.221 ± 0.044 0.172 ± 0.038 0.342 ± 0.049

bert-large-nli-mean-tokens (sd-prec) 0.182 0.550 ± 0.035 0.458 ± 0.033 0.762 ± 0.025

bert-large-nli-mean-tokens (sd-f1) 0.114 0.596 ± 0.030 0.488 ± 0.029 0.784 ± 0.022

bert-large-nli-mean-tokens (mech-prec) 0.174 0.515 ± 0.037 0.429 ± 0.034 0.728 ± 0.029

bert-large-nli-mean-tokens (mech-f1) 0.116 0.573 ± 0.031 0.468 ± 0.029 0.766 ± 0.023

bert-large-nli-cls-token (ref-prec) 0.191 0.158 ± 0.049 0.121 ± 0.042 0.196 ± 0.057

bert-large-nli-cls-token (ref-f1) 0.177 0.202 ± 0.048 0.160 ± 0.041 0.286 ± 0.054

bert-large-nli-cls-token (sd-prec) 0.195 0.546 ± 0.035 0.451 ± 0.034 0.762 ± 0.024

bert-large-nli-cls-token (sd-f1) 0.124 0.599 ± 0.030 0.493 ± 0.029 0.776 ± 0.022

bert-large-nli-cls-token (mech-prec) 0.187 0.510 ± 0.036 0.421 ± 0.033 0.726 ± 0.028

bert-large-nli-cls-token (mech-f1) 0.126 0.577 ± 0.031 0.473 ± 0.030 0.755 ± 0.024

bert-large-nli-stsb-mean-tokens (ref-prec) 0.320 0.174 ± 0.048 0.145 ± 0.041 0.144 ± 0.057

bert-large-nli-stsb-mean-tokens (ref-f1) 0.303 0.196 ± 0.047 0.156 ± 0.040 0.223 ± 0.054

bert-large-nli-stsb-mean-tokens (sd-prec) 0.132 0.578 ± 0.034 0.487 ± 0.032 0.768 ± 0.025

bert-large-nli-stsb-mean-tokens (sd-f1) 0.180 0.624 ± 0.028 0.515 ± 0.027 0.791 ± 0.022

bert-large-nli-stsb-mean-tokens (mech-prec) 0.137 0.530 ± 0.039 0.451 ± 0.036 0.726 ± 0.030

bert-large-nli-stsb-mean-tokens (mech-f1) 0.180 0.588 ± 0.033 0.488 ± 0.031 0.767 ± 0.023

Table A.12.: Mean Absolute Error mae alongside the Spearman’s ρ, Kendall’s τ and Pearson’s r
correlations ± Standard Error of the Mean (sem) between human (Relevance– Sec-

tion 3.2) scores and the scores predicted by the supert and the alternative versions,

as described in Section 5.2. The correlations are calculated at the document level.
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BioASQ (2018 Val) Information Precision estimations

Micro Macro
Method mae mae ρ τ r

bert-base-nli-mean-tokens (ref-prec) 0.199 0.197 ± 0.005 0.340 ± 0.021 0.302 ± 0.019 0.447 ± 0.022

bert-base-nli-mean-tokens (ref-f1) 0.211 0.209 ± 0.005 0.251 ± 0.022 0.225 ± 0.020 0.381 ± 0.024

bert-base-nli-mean-tokens (snip-prec) 0.284 0.281 ± 0.008 0.318 ± 0.020 0.284 ± 0.018 0.449 ± 0.021

bert-base-nli-mean-tokens (snip-f1) 0.253 0.250 ± 0.006 -0.020 ± 0.024 -0.017 ± 0.021 0.245 ± 0.027

bert-base-nli-mean-tokens (sd-prec) 0.220 0.218 ± 0.006 0.256 ± 0.020 0.227 ± 0.018 0.397 ± 0.023

bert-base-nli-mean-tokens (sd-f1) 0.235 0.233 ± 0.004 -0.076 ± 0.024 -0.066 ± 0.022 0.181 ± 0.028

bert-base-nli-mean-tokens (mech-prec) 0.228 0.226 ± 0.006 0.214 ± 0.022 0.190 ± 0.019 0.341 ± 0.024

bert-base-nli-mean-tokens (mech-f1) 0.243 0.240 ± 0.005 0.105 ± 0.023 0.098 ± 0.021 0.271 ± 0.026

bert-base-nli-max-tokens (ref-prec) 0.203 0.201 ± 0.005 0.336 ± 0.021 0.298 ± 0.019 0.442 ± 0.022

bert-base-nli-max-tokens (ref-f1) 0.217 0.214 ± 0.005 0.234 ± 0.022 0.210 ± 0.020 0.373 ± 0.024

bert-base-nli-max-tokens (snip-prec) 0.288 0.285 ± 0.008 0.315 ± 0.020 0.281 ± 0.018 0.438 ± 0.022

bert-base-nli-max-tokens (snip-f1) 0.264 0.261 ± 0.006 -0.032 ± 0.024 -0.027 ± 0.021 0.244 ± 0.027

bert-base-nli-max-tokens (sd-prec) 0.229 0.227 ± 0.006 0.252 ± 0.021 0.224 ± 0.018 0.382 ± 0.023

bert-base-nli-max-tokens (sd-f1) 0.232 0.230 ± 0.005 -0.077 ± 0.024 -0.067 ± 0.022 0.178 ± 0.028

bert-base-nli-max-tokens (mech-prec) 0.235 0.233 ± 0.006 0.206 ± 0.022 0.185 ± 0.019 0.334 ± 0.024

bert-base-nli-max-tokens (mech-f1) 0.250 0.247 ± 0.006 0.094 ± 0.023 0.087 ± 0.021 0.264 ± 0.026

bert-base-nli-cls-token (ref-prec) 0.202 0.199 ± 0.005 0.336 ± 0.021 0.296 ± 0.019 0.450 ± 0.021

bert-base-nli-cls-token (ref-f1) 0.216 0.214 ± 0.005 0.240 ± 0.022 0.213 ± 0.020 0.376 ± 0.024

bert-base-nli-cls-token (snip-prec) 0.291 0.288 ± 0.008 0.320 ± 0.020 0.286 ± 0.018 0.448 ± 0.022

bert-base-nli-max-tokens (snip-f1) 0.262 0.259 ± 0.006 -0.051 ± 0.024 -0.045 ± 0.022 0.233 ± 0.027

bert-base-nli-cls-token (sd-prec) 0.226 0.224 ± 0.006 0.285 ± 0.020 0.252 ± 0.018 0.415 ± 0.022

bert-base-nli-cls-token (sd-f1) 0.232 0.229 ± 0.005 -0.075 ± 0.024 -0.067 ± 0.022 0.183 ± 0.028

bert-base-nli-cls-token (mech-prec) 0.233 0.230 ± 0.006 0.233 ± 0.022 0.208 ± 0.019 0.343 ± 0.023

bert-base-nli-cls-token (mech-f1) 0.246 0.243 ± 0.005 0.113 ± 0.023 0.105 ± 0.021 0.274 ± 0.026

bert-large-nli-mean-tokens (ref-prec) 0.203 0.201 ± 0.005 0.330 ± 0.021 0.295 ± 0.019 0.441 ± 0.022

bert-large-nli-mean-tokens (ref-f1) 0.217 0.215 ± 0.005 0.239 ± 0.022 0.214 ± 0.020 0.376 ± 0.024

bert-large-nli-mean-tokens (snip-prec) 0.287 0.284 ± 0.008 0.319 ± 0.020 0.285 ± 0.018 0.439 ± 0.022

bert-large-nli-mean-tokens (snip-f1) 0.261 0.258 ± 0.006 -0.005 ± 0.023 -0.005 ± 0.021 0.253 ± 0.027

bert-large-nli-mean-tokens (sd-prec) 0.228 0.226 ± 0.006 0.249 ± 0.020 0.220 ± 0.018 0.377 ± 0.023

bert-large-nli-mean-tokens (sd-f1) 0.230 0.228 ± 0.005 -0.077 ± 0.024 -0.067 ± 0.021 0.177 ± 0.028

bert-large-nli-mean-tokens (mech-prec) 0.235 0.232 ± 0.006 0.205 ± 0.022 0.185 ± 0.020 0.327 ± 0.024

bert-large-nli-mean-tokens (mech-f1) 0.248 0.245 ± 0.005 0.113 ± 0.023 0.105 ± 0.021 0.271 ± 0.026

bert-large-nli-cls-token (ref-prec) 0.226 0.223 ± 0.005 0.326 ± 0.021 0.289 ± 0.019 0.436 ± 0.022

bert-large-nli-cls-token (ref-f1) 0.239 0.237 ± 0.006 0.241 ± 0.022 0.215 ± 0.020 0.373 ± 0.024

bert-large-nli-cls-token (snip-prec) 0.296 0.293 ± 0.008 0.319 ± 0.020 0.285 ± 0.018 0.437 ± 0.022

bert-large-nli-cls-token (snip-f1) 0.278 0.275 ± 0.007 -0.004 ± 0.023 -0.003 ± 0.021 0.255 ± 0.027

bert-large-nli-cls-token (sd-prec) 0.250 0.248 ± 0.006 0.278 ± 0.020 0.246 ± 0.018 0.397 ± 0.023

bert-large-nli-cls-token (sd-f1) 0.242 0.239 ± 0.005 -0.040 ± 0.024 -0.033 ± 0.021 0.205 ± 0.027

bert-large-nli-cls-token (mech-prec) 0.252 0.250 ± 0.006 0.230 ± 0.022 0.207 ± 0.019 0.334 ± 0.024

bert-large-nli-cls-token (mech-f1) 0.266 0.263 ± 0.006 0.144 ± 0.023 0.131 ± 0.020 0.297 ± 0.025

bert-large-nli-stsb-mean-tokens (ref-prec) 0.201 0.200 ± 0.004 0.355 ± 0.021 0.315 ± 0.019 0.463 ± 0.021

bert-large-nli-stsb-mean-tokens (ref-f1) 0.211 0.209 ± 0.004 0.279 ± 0.021 0.249 ± 0.019 0.402 ± 0.023

bert-large-nli-stsb-mean-tokens (snip-prec) 0.271 0.268 ± 0.007 0.330 ± 0.020 0.295 ± 0.018 0.451 ± 0.022

bert-large-nli-stsb-mean-tokens (snip-f1) 0.236 0.233 ± 0.005 0.007 ± 0.023 0.008 ± 0.021 0.254 ± 0.027

bert-large-nli-stsb-mean-tokens (sd-prec) 0.215 0.212 ± 0.005 0.276 ± 0.020 0.247 ± 0.018 0.405 ± 0.022

bert-large-nli-stsb-mean-tokens (sd-f1) 0.247 0.245 ± 0.004 -0.047 ± 0.024 -0.040 ± 0.021 0.190 ± 0.027

bert-large-nli-stsb-mean-tokens (mech-prec) 0.226 0.225 ± 0.005 0.217 ± 0.022 0.194 ± 0.019 0.327 ± 0.023

bert-large-nli-stsb-mean-tokens (mech-f1) 0.239 0.237 ± 0.005 0.120 ± 0.023 0.112 ± 0.021 0.270 ± 0.026

Table A.13.: Mean Absolute Error mae on the micro level and macro mae alongside the Spear-

man’s ρ, Kendall’s τ and Pearson’s r correlations ± Standard Error of the Mean (sem)

between human (Information Precision– Section 3.3) scores and the scores predicted by

the supert and the alternative versions, as described in Section 5.2. The correlations

are calculated at the document level.
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BioASQ (2019 Test) Information Precision estimations

Micro Macro
Method mae mae ρ τ r

bert-base-nli-mean-tokens (ref-prec) 0.187 0.184 ± 0.005 0.326 ± 0.030 0.299 ± 0.028 0.387 ± 0.031

bert-base-nli-mean-tokens (ref-f1) 0.190 0.188 ± 0.005 0.295 ± 0.030 0.273 ± 0.029 0.351 ± 0.032

bert-base-nli-mean-tokens (snip-prec) 0.190 0.184 ± 0.007 0.195 ± 0.032 0.183 ± 0.030 0.297 ± 0.034

bert-base-nli-mean-tokens (snip-f1) 0.186 0.181 ± 0.005 0.011 ± 0.035 0.004 ± 0.033 0.149 ± 0.039

bert-base-nli-mean-tokens (sd-prec) 0.181 0.172 ± 0.005 0.149 ± 0.033 0.139 ± 0.031 0.260 ± 0.034

bert-base-nli-mean-tokens (sd-f1) 0.228 0.222 ± 0.005 -0.044 ± 0.035 -0.048 ± 0.033 0.099 ± 0.038

bert-base-nli-mean-tokens (mech-prec) 0.198 0.191 ± 0.006 0.217 ± 0.032 0.207 ± 0.030 0.297 ± 0.033

bert-base-nli-mean-tokens (mech-f1) 0.216 0.210 ± 0.005 0.021 ± 0.035 0.017 ± 0.033 0.139 ± 0.037

bert-base-nli-max-tokens (ref-prec) 0.180 0.177 ± 0.006 0.329 ± 0.030 0.303 ± 0.028 0.401 ± 0.031

bert-base-nli-max-tokens (ref-f1) 0.185 0.182 ± 0.005 0.286 ± 0.031 0.264 ± 0.029 0.342 ± 0.033

bert-base-nli-max-tokens (snip-prec) 0.191 0.184 ± 0.007 0.181 ± 0.032 0.170 ± 0.030 0.287 ± 0.034

bert-base-nli-max-tokens (snip-f1) 0.188 0.183 ± 0.006 -0.007 ± 0.035 -0.012 ± 0.033 0.148 ± 0.039

bert-base-nli-max-tokens (sd-prec) 0.180 0.172 ± 0.005 0.142 ± 0.032 0.132 ± 0.030 0.254 ± 0.034

bert-base-nli-max-tokens (sd-f1) 0.212 0.205 ± 0.005 -0.052 ± 0.035 -0.055 ± 0.033 0.105 ± 0.038

bert-base-nli-max-tokens (mech-prec) 0.199 0.191 ± 0.007 0.219 ± 0.033 0.209 ± 0.031 0.301 ± 0.033

bert-base-nli-max-tokens (mech-f1) 0.211 0.205 ± 0.005 0.020 ± 0.034 0.016 ± 0.032 0.134 ± 0.037

bert-base-nli-cls-token (ref-prec) 0.177 0.172 ± 0.005 0.330 ± 0.030 0.303 ± 0.028 0.410 ± 0.031

bert-base-nli-cls-token (ref-f1) 0.180 0.177 ± 0.005 0.299 ± 0.031 0.278 ± 0.029 0.360 ± 0.033

bert-base-nli-cls-token (snip-prec) 0.193 0.185 ± 0.007 0.189 ± 0.032 0.177 ± 0.030 0.294 ± 0.034

bert-base-nli-max-tokens (snip-f1) 0.187 0.182 ± 0.005 -0.023 ± 0.035 -0.028 ± 0.033 0.135 ± 0.039

bert-base-nli-cls-token (sd-prec) 0.176 0.168 ± 0.005 0.192 ± 0.032 0.178 ± 0.030 0.298 ± 0.033

bert-base-nli-cls-token (sd-f1) 0.211 0.204 ± 0.005 -0.048 ± 0.035 -0.052 ± 0.033 0.099 ± 0.038

bert-base-nli-cls-token (mech-prec) 0.196 0.189 ± 0.006 0.230 ± 0.032 0.218 ± 0.030 0.302 ± 0.032

bert-base-nli-cls-token (mech-f1) 0.209 0.202 ± 0.005 0.045 ± 0.035 0.040 ± 0.033 0.146 ± 0.037

bert-large-nli-mean-tokens (ref-prec) 0.176 0.172 ± 0.005 0.335 ± 0.030 0.309 ± 0.028 0.395 ± 0.032

bert-large-nli-mean-tokens (ref-f1) 0.180 0.177 ± 0.005 0.287 ± 0.031 0.265 ± 0.030 0.358 ± 0.032

bert-large-nli-mean-tokens (snip-prec) 0.191 0.184 ± 0.007 0.176 ± 0.033 0.164 ± 0.031 0.281 ± 0.035

bert-large-nli-mean-tokens (snip-f1) 0.188 0.182 ± 0.006 0.009 ± 0.035 0.003 ± 0.033 0.152 ± 0.038

bert-large-nli-mean-tokens (sd-prec) 0.179 0.171 ± 0.005 0.164 ± 0.033 0.154 ± 0.031 0.261 ± 0.034

bert-large-nli-mean-tokens (sd-f1) 0.179 0.170 ± 0.006 0.155 ± 0.034 0.148 ± 0.032 0.247 ± 0.035

bert-large-nli-mean-tokens (mech-prec) 0.198 0.190 ± 0.006 0.211 ± 0.033 0.203 ± 0.031 0.296 ± 0.033

bert-large-nli-mean-tokens (mech-f1) 0.208 0.201 ± 0.005 0.051 ± 0.035 0.046 ± 0.033 0.157 ± 0.037

bert-large-nli-cls-token (ref-prec) 0.168 0.162 ± 0.005 0.328 ± 0.030 0.301 ± 0.029 0.396 ± 0.032

bert-large-nli-cls-token (ref-f1) 0.174 0.169 ± 0.005 0.301 ± 0.031 0.279 ± 0.030 0.371 ± 0.033

bert-large-nli-cls-token (snip-prec) 0.194 0.187 ± 0.007 0.192 ± 0.032 0.178 ± 0.031 0.291 ± 0.035

bert-large-nli-cls-token (snip-f1) 0.190 0.184 ± 0.006 0.011 ± 0.035 0.004 ± 0.033 0.155 ± 0.038

bert-large-nli-cls-token (sd-prec) 0.184 0.175 ± 0.006 0.203 ± 0.033 0.189 ± 0.031 0.290 ± 0.034

bert-large-nli-cls-token (sd-f1) 0.195 0.187 ± 0.005 -0.027 ± 0.035 -0.032 ± 0.033 0.109 ± 0.038

bert-large-nli-cls-token (mech-prec) 0.199 0.190 ± 0.007 0.228 ± 0.032 0.219 ± 0.030 0.315 ± 0.032

bert-large-nli-cls-token (mech-f1) 0.205 0.197 ± 0.005 0.073 ± 0.035 0.068 ± 0.033 0.167 ± 0.037

bert-large-nli-stsb-mean-tokens (ref-prec) 0.213 0.211 ± 0.006 0.361 ± 0.029 0.332 ± 0.028 0.421 ± 0.031

bert-large-nli-stsb-mean-tokens (ref-f1) 0.215 0.214 ± 0.006 0.301 ± 0.032 0.279 ± 0.030 0.378 ± 0.032

bert-large-nli-stsb-mean-tokens (snip-prec) 0.188 0.181 ± 0.007 0.191 ± 0.032 0.178 ± 0.031 0.287 ± 0.034

bert-large-nli-stsb-mean-tokens (snip-f1) 0.188 0.183 ± 0.005 0.015 ± 0.036 0.009 ± 0.034 0.153 ± 0.038

bert-large-nli-stsb-mean-tokens (sd-prec) 0.196 0.189 ± 0.005 0.184 ± 0.033 0.170 ± 0.031 0.270 ± 0.033

bert-large-nli-stsb-mean-tokens (sd-f1) 0.278 0.273 ± 0.005 -0.047 ± 0.035 -0.050 ± 0.033 0.095 ± 0.038

bert-large-nli-stsb-mean-tokens (mech-prec) 0.196 0.188 ± 0.006 0.216 ± 0.032 0.206 ± 0.031 0.281 ± 0.033

bert-large-nli-stsb-mean-tokens (mech-f1) 0.245 0.239 ± 0.005 0.061 ± 0.035 0.054 ± 0.033 0.143 ± 0.037

Table A.14.: Mean Absolute Error mae on the micro level and macro mae alongside the Spear-

man’s ρ, Kendall’s τ and Pearson’s r correlations ± Standard Error of the Mean (sem)

between human (Information Precision– Section 3.3) scores and the scores predicted

by the supert and the alternative versions, as described in Section 5.2. The correla-

tions are calculated at the document level. BOLD indicates the performance of the

corresponding model that best performed on the validation data with respect the

correlation level or the mae.

A.2 Additional results for content estimation 57



BioASQ (2018 Val) Information Recall estimations

Micro Macro
Method mae mae ρ τ r

bert-base-nli-mean-tokens (ref-rec) 0.189 0.188 ± 0.004 0.561 ± 0.015 0.502 ± 0.014 0.669 ± 0.015

bert-base-nli-mean-tokens (ref-f1) 0.212 0.212 ± 0.004 0.483 ± 0.017 0.426 ± 0.016 0.619 ± 0.017

bert-base-nli-mean-tokens (snip-rec) 0.200 0.198 ± 0.005 0.570 ± 0.015 0.508 ± 0.014 0.666 ± 0.016

bert-base-nli-mean-tokens (snip-f1) 0.188 0.186 ± 0.005 0.547 ± 0.015 0.486 ± 0.013 0.657 ± 0.016

bert-base-nli-mean-tokens (sd-rec) 0.293 0.293 ± 0.005 0.528 ± 0.016 0.471 ± 0.014 0.613 ± 0.018

bert-base-nli-mean-tokens (sd-f1) 0.260 0.259 ± 0.004 0.531 ± 0.016 0.471 ± 0.014 0.639 ± 0.017

bert-base-nli-mean-tokens (mech-rec) 0.261 0.261 ± 0.004 0.498 ± 0.017 0.443 ± 0.015 0.595 ± 0.019

bert-base-nli-mean-tokens (mech-f1) 0.234 0.233 ± 0.005 0.381 ± 0.020 0.338 ± 0.018 0.558 ± 0.020

bert-base-nli-max-tokens (ref-rec) 0.181 0.181 ± 0.004 0.568 ± 0.015 0.510 ± 0.014 0.668 ± 0.016

bert-base-nli-max-tokens (ref-f1) 0.201 0.201 ± 0.004 0.485 ± 0.017 0.428 ± 0.016 0.622 ± 0.018

bert-base-nli-max-tokens (snip-rec) 0.190 0.189 ± 0.005 0.572 ± 0.015 0.510 ± 0.014 0.661 ± 0.016

bert-base-nli-max-tokens (snip-f1) 0.186 0.184 ± 0.005 0.548 ± 0.015 0.487 ± 0.014 0.651 ± 0.017

bert-base-nli-max-tokens (sd-rec) 0.268 0.267 ± 0.004 0.525 ± 0.016 0.467 ± 0.015 0.609 ± 0.018

bert-base-nli-max-tokens (sd-f1) 0.239 0.238 ± 0.004 0.528 ± 0.016 0.468 ± 0.015 0.628 ± 0.018

bert-base-nli-max-tokens (mech-rec) 0.242 0.242 ± 0.004 0.497 ± 0.017 0.443 ± 0.016 0.594 ± 0.019

bert-base-nli-max-tokens (mech-f1) 0.222 0.222 ± 0.005 0.373 ± 0.020 0.331 ± 0.018 0.551 ± 0.021

bert-base-nli-cls-token (ref-rec) 0.179 0.179 ± 0.004 0.592 ± 0.014 0.531 ± 0.013 0.693 ± 0.015

bert-base-nli-cls-token (ref-f1) 0.202 0.202 ± 0.004 0.504 ± 0.017 0.444 ± 0.015 0.638 ± 0.017

bert-base-nli-cls-token (snip-rec) 0.195 0.193 ± 0.005 0.575 ± 0.015 0.512 ± 0.014 0.672 ± 0.016

bert-base-nli-max-tokens (snip-f1) 0.188 0.186 ± 0.005 0.560 ± 0.015 0.499 ± 0.013 0.669 ± 0.016

bert-base-nli-cls-token (sd-rec) 0.274 0.274 ± 0.004 0.534 ± 0.016 0.476 ± 0.015 0.622 ± 0.017

bert-base-nli-cls-token (sd-f1) 0.243 0.243 ± 0.004 0.550 ± 0.016 0.488 ± 0.014 0.652 ± 0.016

bert-base-nli-cls-token (mech-rec) 0.248 0.248 ± 0.004 0.506 ± 0.017 0.451 ± 0.015 0.602 ± 0.018

bert-base-nli-cls-token (mech-f1) 0.225 0.225 ± 0.004 0.374 ± 0.021 0.331 ± 0.019 0.559 ± 0.020

bert-large-nli-mean-tokens (ref-rec) 0.185 0.184 ± 0.004 0.560 ± 0.015 0.501 ± 0.014 0.659 ± 0.016

bert-large-nli-mean-tokens (ref-f1) 0.203 0.203 ± 0.004 0.465 ± 0.017 0.409 ± 0.016 0.615 ± 0.017

bert-large-nli-mean-tokens (snip-rec) 0.194 0.192 ± 0.005 0.561 ± 0.015 0.500 ± 0.014 0.659 ± 0.016

bert-large-nli-mean-tokens (snip-f1) 0.188 0.186 ± 0.005 0.522 ± 0.015 0.465 ± 0.014 0.644 ± 0.017

bert-large-nli-mean-tokens (sd-rec) 0.267 0.266 ± 0.004 0.525 ± 0.016 0.467 ± 0.014 0.608 ± 0.018

bert-large-nli-mean-tokens (sd-f1) 0.240 0.239 ± 0.004 0.531 ± 0.015 0.470 ± 0.014 0.633 ± 0.017

bert-large-nli-mean-tokens (mech-rec) 0.242 0.242 ± 0.004 0.495 ± 0.017 0.440 ± 0.015 0.590 ± 0.019

bert-large-nli-mean-tokens (mech-f1) 0.223 0.222 ± 0.005 0.370 ± 0.020 0.329 ± 0.018 0.548 ± 0.020

bert-large-nli-cls-token (ref-rec) 0.179 0.178 ± 0.005 0.578 ± 0.015 0.520 ± 0.013 0.662 ± 0.016

bert-large-nli-cls-token (ref-f1) 0.192 0.191 ± 0.005 0.474 ± 0.018 0.418 ± 0.016 0.618 ± 0.018

bert-large-nli-cls-token (snip-rec) 0.190 0.188 ± 0.005 0.568 ± 0.015 0.507 ± 0.014 0.663 ± 0.016

bert-large-nli-cls-token (snip-f1) 0.191 0.188 ± 0.006 0.537 ± 0.015 0.478 ± 0.014 0.649 ± 0.016

bert-large-nli-cls-token (sd-rec) 0.235 0.234 ± 0.004 0.529 ± 0.016 0.470 ± 0.015 0.611 ± 0.018

bert-large-nli-cls-token (sd-f1) 0.220 0.219 ± 0.005 0.531 ± 0.016 0.469 ± 0.014 0.632 ± 0.017

bert-large-nli-cls-token (mech-rec) 0.223 0.222 ± 0.004 0.492 ± 0.017 0.438 ± 0.015 0.591 ± 0.018

bert-large-nli-cls-token (mech-f1) 0.216 0.214 ± 0.005 0.365 ± 0.021 0.324 ± 0.018 0.542 ± 0.021

bert-large-nli-stsb-mean-tokens (ref-rec) 0.211 0.212 ± 0.005 0.573 ± 0.014 0.514 ± 0.013 0.670 ± 0.015

bert-large-nli-stsb-mean-tokens (ref-f1) 0.240 0.241 ± 0.005 0.475 ± 0.018 0.419 ± 0.016 0.622 ± 0.017

bert-large-nli-stsb-mean-tokens (snip-rec) 0.217 0.216 ± 0.005 0.569 ± 0.015 0.507 ± 0.013 0.672 ± 0.015

bert-large-nli-stsb-mean-tokens (snip-f1) 0.193 0.192 ± 0.005 0.538 ± 0.015 0.478 ± 0.013 0.661 ± 0.016

bert-large-nli-stsb-mean-tokens (sd-rec) 0.351 0.351 ± 0.006 0.535 ± 0.016 0.475 ± 0.014 0.624 ± 0.017

bert-large-nli-stsb-mean-tokens (sd-f1) 0.307 0.307 ± 0.005 0.536 ± 0.015 0.474 ± 0.014 0.648 ± 0.016

bert-large-nli-stsb-mean-tokens (mech-rec) 0.303 0.304 ± 0.005 0.491 ± 0.017 0.436 ± 0.016 0.592 ± 0.018

bert-large-nli-stsb-mean-tokens (mech-f1) 0.262 0.263 ± 0.005 0.380 ± 0.020 0.337 ± 0.018 0.557 ± 0.020

Table A.15.: Mean Absolute Error mae on the micro level and macro mae alongside the Spear-

man’s ρ, Kendall’s τ and Pearson’s r correlations ± Standard Error of the Mean (sem)

between human (Information Recall– Section 3.3) scores and the scores predicted by

the supert and the alternative versions, as described in Section 5.2. The correlations

are calculated at the document level.
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BioASQ (2019 Test) Information Recall estimations

Micro Macro
Method mae mae ρ τ r

bert-base-nli-mean-tokens (ref-rec) 0.196 0.196 ± 0.006 0.638 ± 0.020 0.596 ± 0.019 0.710 ± 0.022

bert-base-nli-mean-tokens (ref-f1) 0.216 0.217 ± 0.006 0.526 ± 0.024 0.483 ± 0.023 0.609 ± 0.026

bert-base-nli-mean-tokens (snip-rec) 0.179 0.181 ± 0.005 0.650 ± 0.019 0.604 ± 0.018 0.731 ± 0.019

bert-base-nli-mean-tokens (snip-f1) 0.164 0.166 ± 0.006 0.637 ± 0.019 0.590 ± 0.019 0.721 ± 0.020

bert-base-nli-mean-tokens (sd-rec) 0.314 0.309 ± 0.005 0.602 ± 0.021 0.557 ± 0.020 0.700 ± 0.020

bert-base-nli-mean-tokens (sd-f1) 0.261 0.259 ± 0.005 0.593 ± 0.021 0.548 ± 0.020 0.681 ± 0.021

bert-base-nli-mean-tokens (mech-rec) 0.281 0.276 ± 0.005 0.602 ± 0.021 0.557 ± 0.020 0.685 ± 0.021

bert-base-nli-mean-tokens (mech-f1) 0.232 0.230 ± 0.005 0.492 ± 0.026 0.455 ± 0.025 0.614 ± 0.025

bert-base-nli-max-tokens (ref-rec) 0.186 0.186 ± 0.006 0.642 ± 0.020 0.598 ± 0.019 0.722 ± 0.020

bert-base-nli-max-tokens (ref-f1) 0.205 0.206 ± 0.006 0.523 ± 0.024 0.479 ± 0.023 0.622 ± 0.025

bert-base-nli-max-tokens (snip-rec) 0.169 0.171 ± 0.005 0.655 ± 0.018 0.608 ± 0.018 0.736 ± 0.019

bert-base-nli-max-tokens (snip-f1) 0.160 0.162 ± 0.006 0.640 ± 0.019 0.594 ± 0.018 0.721 ± 0.020

bert-base-nli-max-tokens (sd-rec) 0.285 0.280 ± 0.005 0.609 ± 0.021 0.565 ± 0.020 0.701 ± 0.020

bert-base-nli-max-tokens (sd-f1) 0.239 0.237 ± 0.005 0.606 ± 0.021 0.560 ± 0.020 0.689 ± 0.020

bert-base-nli-max-tokens (mech-rec) 0.257 0.252 ± 0.005 0.605 ± 0.021 0.561 ± 0.020 0.684 ± 0.021

bert-base-nli-max-tokens (mech-f1) 0.217 0.215 ± 0.005 0.498 ± 0.026 0.460 ± 0.024 0.618 ± 0.025

bert-base-nli-cls-token (ref-rec) 0.177 0.178 ± 0.005 0.655 ± 0.019 0.611 ± 0.019 0.746 ± 0.019

bert-base-nli-cls-token (ref-f1) 0.202 0.203 ± 0.005 0.568 ± 0.022 0.523 ± 0.021 0.662 ± 0.023

bert-base-nli-cls-token (snip-rec) 0.173 0.174 ± 0.005 0.655 ± 0.019 0.608 ± 0.018 0.744 ± 0.018

bert-base-nli-max-tokens (snip-f1) 0.162 0.164 ± 0.006 0.639 ± 0.020 0.592 ± 0.019 0.732 ± 0.020

bert-base-nli-cls-token (sd-rec) 0.291 0.286 ± 0.005 0.620 ± 0.020 0.575 ± 0.019 0.712 ± 0.020

bert-base-nli-cls-token (sd-f1) 0.243 0.241 ± 0.005 0.615 ± 0.020 0.569 ± 0.019 0.703 ± 0.020

bert-base-nli-cls-token (mech-rec) 0.264 0.259 ± 0.005 0.611 ± 0.021 0.567 ± 0.020 0.691 ± 0.021

bert-base-nli-cls-token (mech-f1) 0.221 0.218 ± 0.005 0.484 ± 0.026 0.447 ± 0.025 0.607 ± 0.025

bert-large-nli-mean-tokens (ref-rec) 0.185 0.185 ± 0.006 0.628 ± 0.021 0.587 ± 0.020 0.702 ± 0.021

bert-large-nli-mean-tokens (ref-f1) 0.203 0.203 ± 0.006 0.518 ± 0.025 0.477 ± 0.024 0.600 ± 0.026

bert-large-nli-mean-tokens (snip-rec) 0.171 0.172 ± 0.005 0.656 ± 0.019 0.609 ± 0.018 0.732 ± 0.019

bert-large-nli-mean-tokens (snip-f1) 0.162 0.164 ± 0.006 0.640 ± 0.019 0.593 ± 0.018 0.727 ± 0.019

bert-large-nli-mean-tokens (sd-rec) 0.279 0.275 ± 0.005 0.617 ± 0.020 0.571 ± 0.020 0.700 ± 0.021

bert-large-nli-mean-tokens (sd-f1) 0.236 0.235 ± 0.005 0.600 ± 0.021 0.555 ± 0.020 0.683 ± 0.021

bert-large-nli-mean-tokens (mech-rec) 0.254 0.250 ± 0.005 0.608 ± 0.021 0.564 ± 0.020 0.691 ± 0.021

bert-large-nli-mean-tokens (mech-f1) 0.216 0.214 ± 0.005 0.485 ± 0.026 0.452 ± 0.025 0.603 ± 0.026

bert-large-nli-cls-token (ref-rec) 0.167 0.168 ± 0.006 0.655 ± 0.019 0.613 ± 0.018 0.740 ± 0.019

bert-large-nli-cls-token (ref-f1) 0.183 0.184 ± 0.006 0.548 ± 0.023 0.504 ± 0.022 0.646 ± 0.024

bert-large-nli-cls-token (snip-rec) 0.162 0.164 ± 0.006 0.650 ± 0.019 0.603 ± 0.018 0.733 ± 0.019

bert-large-nli-cls-token (snip-f1) 0.162 0.164 ± 0.006 0.639 ± 0.019 0.593 ± 0.018 0.723 ± 0.020

bert-large-nli-cls-token (sd-rec) 0.237 0.235 ± 0.005 0.612 ± 0.021 0.567 ± 0.020 0.692 ± 0.021

bert-large-nli-cls-token (sd-f1) 0.210 0.210 ± 0.005 0.613 ± 0.020 0.566 ± 0.019 0.682 ± 0.020

bert-large-nli-cls-token (mech-rec) 0.222 0.220 ± 0.005 0.603 ± 0.021 0.559 ± 0.020 0.680 ± 0.021

bert-large-nli-cls-token (mech-f1) 0.201 0.199 ± 0.005 0.483 ± 0.027 0.449 ± 0.025 0.589 ± 0.026

bert-large-nli-stsb-mean-tokens (ref-rec) 0.223 0.220 ± 0.006 0.642 ± 0.019 0.600 ± 0.019 0.736 ± 0.019

bert-large-nli-stsb-mean-tokens (ref-f1) 0.248 0.246 ± 0.006 0.547 ± 0.024 0.506 ± 0.022 0.649 ± 0.023

bert-large-nli-stsb-mean-tokens (snip-rec) 0.201 0.202 ± 0.006 0.654 ± 0.019 0.607 ± 0.018 0.740 ± 0.019

bert-large-nli-stsb-mean-tokens (snip-f1) 0.173 0.174 ± 0.005 0.641 ± 0.019 0.595 ± 0.019 0.733 ± 0.020

bert-large-nli-stsb-mean-tokens (sd-rec) 0.383 0.377 ± 0.007 0.622 ± 0.020 0.577 ± 0.019 0.702 ± 0.020

bert-large-nli-stsb-mean-tokens (sd-f1) 0.318 0.314 ± 0.006 0.609 ± 0.021 0.564 ± 0.020 0.684 ± 0.021

bert-large-nli-stsb-mean-tokens (mech-rec) 0.337 0.330 ± 0.006 0.612 ± 0.021 0.569 ± 0.020 0.686 ± 0.021

bert-large-nli-stsb-mean-tokens (mech-f1) 0.272 0.268 ± 0.005 0.506 ± 0.025 0.469 ± 0.024 0.607 ± 0.025

Table A.16.: Mean Absolute Error mae on the micro level and macro mae alongside the Spear-

man’s ρ, Kendall’s τ and Pearson’s r correlations ± Standard Error of the Mean (sem)

between human (Information Recall– Section 3.3) scores and the scores predicted

by the supert and the alternative versions, as described in Section 5.2. The correla-

tions are calculated at the document level. BOLD indicates the performance of the

corresponding model that best performed on the validation data with respect the

correlation level or the mae.
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