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Gaussian process regression

Regression with Gaussian noise

Data: {(xi , yi ), i = 1, . . . , n} where xi is a vector and yi scalar

Likelihood:
yi = f (xi ) + ε, ε ∼ N(0, σ2)

p(y|f) = N(y|f, σ2I ), fi = f (xi )

GP prior on f:
p(f) = N(f|0,Knn)

Knn is the n × n covariance matrix on the training data
computed using a kernel that depends on θ

Hyperparameters: (σ2,θ)
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Gaussian process regression

Maximum likelihood II inference and learning

Prediction: Assume hyperparameters (σ2,θ) are known

Infer the latent values f∗ at test inputs X∗:

p(f∗|y) =

∫
f

p(f∗|f)p(f|y)df

p(f∗|f) test conditional, p(f|y) posterior on training latent
values

Learning (σ2,θ): Maximize the marginal likelihood

p(y) =

∫
f
p(y|f)p(f)df = N(y|0, σ2I + Knn)

Time complexity is O(n3)
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Sparse GP regression

Time complexity is O(n3): Intractability for large datasets

Exact prediction and training is intractable

We can neither compute the predictive distribution p(f∗|y) nor
the marginal likelihood p(y)

Approximate/sparse methods:

Subset of data: Keep only m training points, complexity is
O(m3)
Inducing/active/support variables: Complexity O(nm2)
Other methods: Iterative methods for linear systems
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Sparse GP regression using inducing variables

Inducing variables

Subset of training points (Csato and Opper, 2002; Seeger et al. 2003,

Smola and Bartlett, 2001)

Test points (BCM; Tresp, 2000)

Auxiliary variables (Snelson and Ghahramani, 2006; Quiñonero-Candela

and Rasmussen, 2005)

Training the sparse GP regression system

Select inducing inputs

Select hyperparameters (σ2,θ)

Which objective function is going to do all that?

The approximate marginal likelihood
But which approximate marginal likelihood?
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Sparse GP regression using inducing variables

Approximate marginal likelihoods currently used are derived

by changing/approximating the likelihood p(y|f)
by changing/approximating the prior p(f) (Quiñonero-Candela and

Rasmussen, 2005)

all have the form

FP = N(y|0, K̃ )

where K̃ is some approximation to the true covariance
σ2I + Knn

Overfitting can often occur

The approximate marginal likelihood is not a lower bound

Joint learning of the inducing points and hyperparameters
easily leads to overfitting
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Sparse GP regression using inducing variables

What we wish to do here

Do model selection in a different way

Never think about approximating the likelihood p(y|f) or the
prior p(f)
Apply standard variational inference

Just introduce a variational distribution to approximate the
true posterior

That will give us a lower bound

We will propose the bound for model selection

jointly handle inducing inputs and hyperparameters
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Auxiliary inducing variables (Snelson and Ghahramani, 2006)

Auxiliary inducing variables: m latent function values fm
associated with arbitrary inputs Xm

Model augmentation: We augment the GP prior
p(f, fm) = p(f|fm)p(fm)

joint p(y|f)p(f|fm)p(fm)

marginal likelihood

∫
f,fm

p(y|f)p(f|fm)p(fm)dfdfm

The model is unchanged! The predictive distribution and the
marginal likelihood are the same

The parameters Xm play no active role (at the moment)...and
there is no any fear about overfitting when we specify Xm
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Auxiliary inducing variables

What we wish: To use the auxiliary variables (fm,Xm) to
facilitate inference about the training function values f

Before we get there: Let’s specify the ideal inducing variables

Definition: We call (fm,Xm) optimal when y and f are
conditionally independent given fm

p(f|fm, y) = p(f|fm)

At optimality: The augmented true posterior p(f, fm|y)
factorizes as

p(f, fm|y) = p(f|fm)p(fm|y)
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Auxiliary inducing variables

What we wish: To use the auxiliary variables (fm,Xm) to
facilitate inference about the training function values f

Question: How can we discover optimal inducing variables?

Answer: Minimize a distance between the true p(f, fm|y) and
an approximate q(f, fm) wrt to Xm and (optionally) the
number m

The key: q(f, fm) must satisfy the factorization that holds for
optimal inducing variables:

True p(f, fm|y) = p(f|fm, y)p(fm|y)

Approximate q(f, fm) = p(f|fm)φ(fm)
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Variational learning of inducing variables

Variational distribution:

q(f, fm) = p(f|fm)φ(fm)

φ(fm) is an unconstrained variational distribution over fm

Standard variational inference: We minimize the divergence
KL(q(f, fm)||p(f, fm|y))

Equivalently we maximize a bound on the true log marginal
likelihood:

FV (Xm, φ(fm)) =

∫
f,fm

q(f, fm) log
p(y|f)p(f|fm)p(fm)

q(f, fm)
dfdfm

Let’s compute this
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Computation of the variational bound

FV (Xm, φ(fm)) =

∫
f,fm

p(f|fm)φ(fm) log
p(y|f)p(f|fm)p(fm)

p(f|fm)φ(fm)
dfdfm

=

∫
f,fm

p(f|fm)φ(fm) log
p(y|f)p(fm)

φ(fm)
dfdfm

=

∫
fm

φ(fm)

{∫
f
p(f|fm) log p(y|f)df + log

p(fm)

φ(fm)

}
dfm

=

∫
fm

φ(fm)

{
log G (fm, y) + log

p(fm)

φ(fm)

}
dfm

log G (fm, y) = log
[
N(y|E [f|fm], σ2I )

]
− 1

2σ2
Tr [Cov(f|fm)]

E [f|fm] = KnmK−1
mmfm, Cov(f|fm) = Knn − KnmK−1

mmKmn
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Computation of the variational bound

Merge the logs

FV (Xm, φ(fm)) =

∫
fm

φ(fm)

{
log

G (fm, y)p(fm)

φ(fm)

}
dfm

Reverse Jensen’s inequality to maximize wrt φ(fm):

FV (Xm) = log

∫
fm

G (fm, y)p(fm)dfm

= log

∫
fm

N(y|αm, σ2I )p(fm)dfm − 1

2σ2
Tr [Cov(f|fm)]

= log
[
N(y|0, σ2I + KnmK−1

mmKmn)
]
− 1

2σ2
Tr [Cov(f|fm)]

where Cov(f|fm) = Knn − KnmK−1
mmKmn
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Variational bound versus PP log likelihood

The traditional projected process (PP or DTC) log likelihood
is

FP = log
[
N(y|0, σ2I + KnmK−1

mmKmn)
]

What we obtained is

FV = log
[
N(y|0, σ2I + KnmK−1

mmKmn)
]
− 1

2σ2
Tr [Knn − KnmK−1

mmKmn]

We got this extra trace term (the total variance of p(f|fm))
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Optimal φ∗(fm) and predictive distribution

The optimal φ∗(fm) that corresponds to the above bound
gives rise to the PP predictive distribution (Csato and Opper, 2002;

Seeger and Williams and Lawrence, 2003)

The approximate predictive distribution is identical to PP
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Variational bound for model selection

Learning inducing inputs Xm and (σ2,θ) using continuous
optimization

Maximize the bound wrt to (Xm, σ2,θ)

FV = log
[
N(y|0, σ2I + KnmK−1

mmKmn)
]
− 1

2σ2
Tr [Knn − KnmK−1

mmKmn]

The first term encourages fitting the data y

The second trace term says to minimize the total variance of
p(f|fm)

The trace Tr [Knn − KnmK−1
mmKmn] can stand on its own as an

objective function for sparse GP learning
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Variational bound for model selection

When the bound becomes equal to the true marginal log
likelihood, i.e

FV = log p(y),

then:

Tr [Knn − KnmK−1
mmKmn] = 0

Knn = KnmK−1
mmKmn

p(f|fm) becomes a delta function

We can reproduce the full/exact GP prediction
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Illustrative comparison on Ed Snelson’s toy data
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We compare the traditional PP/DTC log likelihood

FP = log
[
N(y|0, σ2I + KnmK−1

mmKmn)
]

and the bound

FV = log
[
N(y|0, σ2I + KnmK−1

mmKmn)
]
− 1

2σ2
Tr [Knn − KnmK−1

mmKmn]

We will jointly maximize over (Xm, σ2,θ)
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Illustrative comparison

200 training points, red line is the full GP, blue line the sparse GP.
We used 8, 10 and 15 inducing points

8 10 15

VAR

PP
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Illustrative comparison

exponential kernel σ2
f exp

(
− (xm−xn)2

2`2

)
Table: Model parameters found by variational training

8 10 15 full GP
`2 0.5050 0.4327 0.3573 0.3561
σ2

f 0.5736 0.6820 0.6854 0.6833
σ2 0.0859 0.0817 0.0796 0.0796
MargL -63.5282 -57.6909 -55.5708 -55.5647

There is a pattern here (observed in many datasets)

The noise σ2 decreases with the number of inducing points,
until full GP is matched

This is desirable: The method prefers to explain some signal
as noise when the number of inducing variables is not enough
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Illustrative comparison

A more challenging problem

From the original 200 training points keep1 only 20
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Illustrative comparison

8 10 15

VAR

PP
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Illustrative comparison

exponential kernel σ2
f exp

(
− (xm−xn)2

2`2

)
Table: Model parameters found by variational training

8 10 15 full GP
`2 0.2621 0.2808 0.1804 0.1798
σ2

f 0.3721 0.5334 0.5209 0.5209
σ2 0.1163 0.0846 0.0647 0.0646
MargL -16.0995 -14.8373 -14.3473 -14.3461

Table: Model parameters found by PP marginal likelihood

8 10 15 full GP
`2 0.0766 0.0632 0.0593 0.1798
σ2

f 1.0846 1.1353 1.1939 0.5209
σ2 0.0536 0.0589 0.0531 0.0646
MargL -8.7969 -8.3492 -8.0989 -14.3461
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Variational bound compared to PP likelihood

The variational method converges to the full GP model in a
systematic way as we increase the number of inducing
variables

It tends to find smoother predictive distributions than the full
GP (the decreasing σ2 pattern) when the amount of inducing
variables is not enough

The PP marginal likelihood will not converge to the full GP as
we increase the number of inducing inputs and maximize over
them

PP tends to interpolate the training examples
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SPGP/FITC marginal likelihood (Snelson and
Ghahramani 2006)

SPGP uses the following marginal likelihood

N(y|0, σ2I + diag[Knn − KnmK−1
mmKmn] + KnmK−1

mmKmn)

The covariance used is closer to the true thing σ2 + Knn

compared to PP

SPGP uses a non-stationary covariance matrix that can model
input-dependent noise

SPGP is significantly better for model selection than the PP
marginal likelihood (Snelson and Ghahramani, 2006, Snelson, 2007)



Variational Model Selection for Sparse Gaussian Process Regression

SPGP/FITC marginal likelihood on toy data

First row is for 200 training points and second row for 20 training
points
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SPGP/FITC on toy data

Model parameters found by SPGP/FITC marginal likelihood

Table: 200 training points

8 10 15
`2 0.2531 0.3260 0.3096 0.3561
σ2

f 0.3377 0.7414 0.6761 0.6833
σ2 0.0586 0.0552 0.0674 0.0796
MargL -56.4397 -50.3789 -52.7890 -55.5647

Table: 20 training points

8 10 15
`2 0.2622 0.2664 0.1657 0.1798
σ2

f 0.5976 0.6489 0.5419 0.5209
σ2 0.0046 0.0065 0.0008 0.0646
MargL -11.8439 -11.8636 -11.4308 -14.3461
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SPGP/FITC marginal likelihood

It can be much more robust to overfitting than PP

Joint learning of inducing points and hyperparameters can
cause overfitting

It is able to model input-dependent noise

That is a great advantage in terms of performance measures
that involve the predictive variance (like average negative log
probability density)

It will not converge to the full GP as we increase the number
of inducing points and optimize over them
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Boston-housing dataset

13 inputs, 455 training points, 51 test points. Optimizing only over
inducing points Xm. (σ2,θ) fixed to those obtained from full GP
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Figure: KLs between full GP predictive distribution (51-dimensional Gaussian)

and sparse ones and the marginal likelihood

Only the variational method drops the KLs to zero
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Boston-housing dataset

Joint learning of inducing inputs and hyperparameters
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Figure: Standardised mean squared error (SMSE), standardized negative log

probability density (SNLP) and the marginal likelihood wrt to the number of

inducing points

For 250 points the variational method is very close to full GP
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Large datasets

Two large datasets:

kin40k dataset: 10000 training, 30000 test, 8 attributes,
http://ida.first.fraunhofer.de/∼anton/data.html

sarcos dataset: 44, 484 training, 4, 449 test, 21 attributes,
http://www.gaussianprocess.org/gpml/data/

The inputs were normalized to have zero mean and unit variance
on the training set and the outputs were centered so as to have
zero mean on the training set
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kin40k

Joint learning of inducing points and hyperparameters. The subset
of data (SD) uses 2000 training points
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Figure: Standardised mean squared error (SMSE) and standardized negative

log probability density (SNLP) wrt to the number of inducing points
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sarcos

Joint learning of inducing points and hyperparameters. The subset
of data (SD) uses 2000 training points
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Variational bound for greedy model selection

Inducing inputs Xm selected from the training set

m ⊂ {1, . . . , n} be indices of the subset of data used as
inducing/active variables.

n −m denotes the remaining training points

Optimal active latent values fm satisfy

p(f|y) = p(fn−m|fm, yn−m)p(fm|y)

= p(fn−m|fm)p(fm|y)

Variational distribution: q(f) = p(fn−m|fm)φ(fm)

Variational bound:

FV = log
[
N(y|0, σ2I + KnmK−1

mmKmn)
]
− 1

2σ2
Tr [Cov(fn−m|fm)]
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Variational bound for greedy model selection

Greedy selection with hyperparameters adaption (Seeger, et.
al., 2003)

1 Initialization: m = ∅, n −m = {1, . . . , n}
2 Point insertion and adaption:

E-like step: Add j ∈ J ⊂ n −m, into m so as a criterion ∆j is
maximised
M-like step: Update (σ2,θ) by maximizing the approximate
marginal likelihood

3 Go to step 2 or stop

For the PP marginal likelihood this is problematic

Non smooth convergence: The algorithm is not an EM

The variational bound solves this problem. The above procedure
becomes precisely a variational EM algorithm
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Variational bound for greedy model selection

The variational EM property comes out of the Proposition 1

Proposition 1. Let (m,Xm, fm) be the current set of active
points. Any training point i ∈ n −m added into the active set
can never decrease the lower bound.

In other words: Any point inserted cannot decrease the
divergence KL(q(f)||p(f|y))

E-step (point insertion): Corresponds to an update of the
variational distribution

q(f) = p(fn−m|fm)φ(fm)

M-step: Updates the parameters by maximizing the bound

Monotonic increase of the variational bound is guaranteed for any
possible criterion ∆
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Variational formulation for sparse GP regression

Define a full GP regression model

Define a variational distribution of the form

q(f, fm) = p(f|fm)φ(fm)

Get the approximate predictive distribution

true p(f∗|y) =

∫
f,fm

p(f∗|f, fm)p(f, fm|y)

approx. q(f∗|y) =

∫
f,fm

p(f∗|fm)p(f|fm)φ(fm) =

∫
fm

p(f∗|fm)φ(fm)dfm

Compute the bound and use it for model selection

Regarding the predictive distribution, what differentiates between
SD, PP/DTC, FITC and PITC is the φ(fm) distribution
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Variational bound for FITC (similarly for PITC)

The full GP model that variationally reformulates FITC
models input-dependent noise

p(y|f) = N(y|f, σ2I + diag[Knn − KnmK−1
mmKmn])

FITC log marginal likelihood

FSPGP(Xm) = log
[
N(y|0,Λ + KnmK−1

mmKmn)
]

where Λ = σ2I + diag[Knn − KnmK−1
mmKmn]

The corresponding variational bound

FV (Xm) = log
[
N(y|0,Λ + KnmK−1

mmKmn)
]
− 1

2
Tr [Λ−1K̃ ]

where K̃ = Knn − KnmK−1
mmKmn

Again a trace term is added
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Related work/Conclusion

Related work

There is an unpublished draft of Lehel Csato and Manfred
Opper about variational learning of hyperparameters in sparse
GPs

Seeger (2003) uses also variational methods for sparse GP
classification problems

Conclusions

The variational method can provide us with lower bounds

This can be very useful for joint learning of inducing inputs
and hyperparameters

Future extensions: classification, differential equations
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